AR VAV AARARAA AN

B Mm:umm—

Multhey/42|
Developer's Technical
Reference

Keyboard Controller Firmware
for a Super I/O Chipset
With An Embedded 8042 Microcontroller

Copyright

Disclaimers

Trademarks

©Copyright 1996 by Phoenix Technologies Ltd. All rights reserved. No part
of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of Phoenix
Technologies Ltd., 2770 De La Cruz Boulevard, Santa Clara, CA 95050.

Phoenix Technologies Ltd. makes no representations or warranties with respect
to the design and documentation herein described and especially disclaims any
implied warranties of merchantability or fitness for any particular purpose.
Further, Phoenix Technologies Ltd. reserves the right to revise this design and
associated documentation and to make changes from time to time in the
content without obligation of Phoenix Technologies Ltd. to notify any person
of such revisions or changes.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
document, and Phoenix Technologies Ltd. was aware of atrademark claim, the
designations have been printed in initial caps or all caps. All other trademarks
and copyrights are the property of their respective owners.

References may be made in this manual to Intel which is atrademark of Intel
Corporation; to AT, PS/2 and IBM which are trademarks of International
Business Machines Corporation; Windows is a trademark of Microsoft
Corporation; Novell is atrademark of Novell Corporation, and to MultiKey,
NoteBIOS, and PhoenixBIOS which are trademarks of Phoenix Technologies
Ltd.

Document Inquiries

No document number is displayed on the cover of this document. When
discussing this document please refer to thetitle (MultiKey/42i Developer's
Technical Reference), publication date (August 23, 1996) and the following
internal tracking number: 1.01.

MultiKey/42i Developer's Technical Reference

Preface

This document presents the specifications and functional data for the Phoenix
MultiKey/42i product. MultiKey/42i isakeyboard and auxiliary device
software for personal computers designed and licensed for use in the 8042
microcontroller family. This document is organized into the following
chapters.

Chapter 1 MultiKey/42i Overview - An introduction to the MultiKey/42i
features and functionality.

Chapter 2 MultiKey/42i Hardware Perspectives - A discussion of the MultiKey
interface from a hardware point of view.

Chapter 3 MultiKey/42i Software Interface - A complete listing of the
MultiKey/42i command set.

Chapter 4 MultiKey/42i Configuration Utility - A complete description of the
MultiKey/42i Configuration Utility.

Chapter 5 MultiKey Keyboard Controller Routines - Coding examples for
communicating with the Keyboard Controller.

Related Documentation

Consult the following documents for additional information.

* System BIOSfor IBM PCs, Compatibles, and EISA Computers, Second Edition,
Phoenix Technologies Ltd., Addison Wesley, 1991

MultiKey/42i Developer's Technical Reference

This page left blank.

MultiKey/42i Developer's Technical Reference

Contents

Chapter 1 MURIKEY/A21 OVEIVIEW.......ccoieiiiiiie ettt e et e e e e e eeaba e e e aaaaees 1
1.1 Standard/EXtENAEA FEALIUIES..........eeii e ieerie et see st ee st ee e et ee e e seeeneesseenteeneesseeneeeneesseeeeenes 1
1.1.1 Standard 2K 8042 COUE SIZE.......ccciieerieeieeieseeseeeeseeneeseesteeneesneesteenseaseesseenseaseesseensesneesseens 2
1.1.2 Standard/Extended Keyboard SUPPOIL.........c.coieiiiierienesieseese e see e see e e nee e seeens 2
1.1.3 Standard/Extended PS/2 MOUSE SUPPOLL......cceeiiiirrierieiienteeneeaeeseeneeseesseeseessesseeensesneesseens 2
1.1.4 Transparent SOftware Gat@AZ2Q.........ceveerriiereere et eree e e esee e eeneeaeesseeneeaseesseensesneesseens 2
1.1.5 Keyboard/MouSe POrt SWaPPING veieeririiereesieeieseesee e sieesee e eeseesseesseeseesseesseensesneesseens 2
1.1.6 RAM/ROM Scan Code Conversion TabIE.........c.cociiiriienriiesiese e see e seeneeens 3
1.1.7 Password and KEYLOCK SECUILY.ciieruriiereerieeeeseeneeseesieeneesseeseeseesseesseeneesseesseensesneesseens 3
1.1.8 DUal PASSWOIA SUPPOIL.....cuiiueeiieeieeeiesteeieeiesteesee e steeeesseesteeneesseesseeseaseesseensesneesseensesneessenns 3
1.1.9 Security Pin CONIOl TASKciiieiriieriere et e ettt ee s e e eesneesteeneesneeseeesesneenseens 4
1.1.10 Secure USB Password Validation..........ccccciieeriiierieenr e see e see e seeeneesneeseeens 4
10,11 SECUIE PASSWOIT. ... eeiueeiiieieieeesieeneeateesteeteeseesteeseeaneesteeeesseesseeneeaseesseenseaneesseeseaneesseensesnenssenns 4
1.1.12 Secure Controller CONfIQUIALION..........ueoiiiereere et esesee et see s e eee e seeeseesseeseeeneesneeseeens 4
1.1.13 Programmable HOKEYS..........oiieiiieriee ettt ee e saeeeesneenneens 5
1.1.14 QUICKLOCK INICALION.cviiiiie ittt ettt et ettt st e e e e et e e te e s te e eaneesbeeesbeeenbeesnraanns 5
1.1.15 User INPUL INACTIVILY TIMEL......ciieiiiiereeeie et e seesee st eeseesteeeesnee e eeesneesseeneesneesseesesneesseens 6
1.1.16 INACtiVity INVOKEA SECUILY......eeitieerieerieeie et e ettt ee et esteeee e steeeesneesaeeeesneenneens 7
O 0 A [o = Vo 1171 2 o o L1 T OSSPSR 8
1.1.18 ExXternal INPUL DEECHION.oiieeiesieeie ettt e et esteeneeeneesneeeesneenneens 8
1.1.19 External INput INVOKEA SECUIITY......cuvieieieee e see et e e e enes 10
1.1.20 Activity Restored by Mouse, Keyboard and External INpUL...........cccocevoviienienrinseeneene 10
1.1.21 OEM MultiKey/42i Configuration ULILY..........corierrieerierr e 10
1.2 Architectural CONSIEIAtIONS..........iuiiieriee ettt ee e ste e sreeseeeeesseesaeeneesreenseeneeaneen 11
1.2.1 12MHz KBC PIlatfOrm SUPPOIT......cciieiiieerieeeiieste e see st eee e sieesee e sseeeesneesseeneesneesseenseenes 11
1.2.2 PS/2 Style PlatfOrm SUPPOLL........cciiieiiere e siesie e see st ee s e e nee e seeeneesneesseeneeenes 11
1.2.3 IBM Defined RAM LOCALIONS........cerieerieenieeiriiesieeeeseeeseeeeesseesseeneesseesseensesseesseensesneesseensesnes 12
1.2.4 Keyboard Controller Stat@ SAVING.........cceuverrieerieeiieseesee e s see et e e sneeseeeneeeneesseeneeenes 12
1.2.5 Extended Keyboard and Mouse ECho COMMANGS.........cccoveeereerernienieeneseeseenee e seeenee e 12
RGN o (o To [N o a1 {T (=T 1= L[) ST 13
Chapter 2 MultiKey/42i Hardware Perspectives ... 15
2.1 Keyboard Controller MiCrOPIOCESSOL.....c...cuuiueerieieieeeseeeesseesteeseesneesseeneesseesseenseaneesseessesseesseessesnes 15
B (o 1= 0 T 1TSS 16
2.3 Pin Control Task Definition.........cccuiiiierieeiiese e see et e e e st ee e seeeneesneesreeneeenes 20
P =Yg F= Lo Y =Y T Y = o S 21
2.5 Default Scan Code Conversion Table............cooieiiieiieieees e 24
Chapter 3 MultiKey/42i Software INterface..........ccccvviiiiiiiii 27
IGO0 401 04 F= T g To I 101V Tox L [o 1SS 27
BT S) r- LD L3 =T) (- oS 27
ICTRC IS = LaTo = 1o I @700 g = 10 o S 28
I (1= g Lo [=To [@) 4 4= 1o o SR 29
3.5 Keyboard Controller Command BYLE.........c.ciieiieiiieriere e enee s 30
3.6 Keyboards and Auxiliary Device COMMANAS...........cueiierrieereerr e seenee et see e esee e eeeneeenes 31

MultiKey/42i Developer's Technical Reference

Chapter 4 MultiKey/42i Configuration ULHITY...........ooooiiiiiiiie e 33

4.1 Configuration ULIlity OVEIVIEM...........eeiieeerieerieeiesieeie e steesae e seeeee e seeeeesseesseeneesseesseeneesseensennes 33
4.1.1 Starting the Configuration ULIItY..........c.cooieiriiori e 34
4.1.2 The MAiN SCrEEN LAYOUL......ccuiitieiieeieiiiesie e stte st ee e ste e eeste s e sseeseesneesteenseeneesseensesneeseeens 35
4.1.3 Program CONLIOl OVEIVIEW..........ciieeeiieerieeiesiieseeeeeseeesseaeesseesseaeesseessesnsesseessessessseessesseessenns 35
4.1.4 Program ON-LiNE HEIP......coi ettt sttt enae e steeeesneenneens 36
4.1.5 Keyboard Controller INfOrMation...........ooieriierreie et ae e neeens 37
4.1.6 Configuration Utility Screen AttrBULES.ioii e 38
4.1.7 Saving the Configuration t0 DiSK.........c.ciieir e 38

4.2 MUItIKEY/A2i FEATUIE SUPPOIT. .. .iiueiitieieeiesieeeie et et eeeste e e eeseeeeesseeseeeneesseenaeeneesseesseeneesneenseenes 40
4.2.1 Configuring HOtKeys and TaskKS..........cceiiiriieriee et 42
4.2.2 Configuring Input Pin EVENtS aNd TaSKS........cceiiiiiiierieee e eee e see st see e eseeseeseeens 43
4.2.3 Configuring Inactivity Timer and TaSKS.........cccoiviiiiierieeseese e ee e ee e neeseeseeens 44
4.2.4 Configuring Password Security and TasKS........c.cccuieeririrrieenreeseese e see e eseeseeseeens 46
4.2.5 Configuring MiSCellan@0ous FEALUIES..........cviieiiirieere e ee st ee st enee e neeeeeseeens 48
4.2.6 Exiting Configuration ULIITY...........coooriieriee et e e eee e neeens 49

Chapter 5 MultiKey Keyboard Controller ROULINES............uuuiiiiiiiiiiiiiii e 51

5.1 ROULINES OVEIVIEW... ...ttt stttk t etk bbbt b bt bbbt bbbt bt bt e bt s b e e besbeabesbenbesbe e 51
5.1.1 MultiKey CONLrol ROULINES.........coiiieeieese et se et e e ee e seeeee e e seeeneesseenseeneesseeneeenes 51
5.1.2 MultiKey SUPPOIt ROULINES........eeiiieritiesieeeesie et e see e ee e seeeee s e seeeneeseeenseeneesseeneeenes 52
5.1.3 MUltiKey/42i BIOS ROULINES.......cciiiiiierieeiesieesesiesieesee e st enae e seeeeesseeseeeneesseesseeneesseenseenes 52
5.1.4 MUltiKey/42i SETUP ROULINES.ccuiiiiiieee et ese et et ste e e st eseeeeesreeseeeneesneeneeenes 53
5.1.5 Keyboard/Mouse POST ROULINES........ccoiiiiiieeiieseese et e e e ee e see e e saeeneesneeneeenes 53
5.1.6 Sample Keyboard Controller COOE.........uouiiieiiiieriee e 54

Vi MultiKey/42i Developer's Technical Reference

Figures

1-1. Inactive Pin USAgEe DIAQIaM.i i ittt a e e e e e et e e e e e e eeannaa e eas 7
1-2. Video Memory Write Detection DIagram.coeeiuuuuiie e e e 9
1-3. Front Panel with Activity Detection DIagram.uuoiieaaiiiiiiiiiiae e eeeeea s 9
2-1. 8042 In DIP & PLCC Package TYPES. ...ttt 16
2-2. MultiKey/42i AT Platform without @ PS/2 MOUSE.cooiiiiiiiiiiiee e 17
2-3. MultiKey/42i AT Platform with & PS/2 MOUSE.oiiiiiiiiiiiiiii e 17
2-4. MultiKey/42i PS/2 Platform with @ PS/2 MOUSE............cccvviiiiiiiii 18
2-5. 8042 with Mouse Interrupt Hardware.coovvviiiiiiiii e 19
2-6. 8042 with Mouse INterrupt SOftWAre.covvviiiiiiiii 19
4-1. CFGA2I.EXE MAIN SCIEEM....ciiiiiiiiiiiiiie e e ettt e e e sttt e e e e e e e bbb e e e e e e e e s aanbraeaaaaaeas 34
4-2. MultiKey/42iConfiguration Error MESSAQE.uuuuuuururrrrrrrrerierrerererrnrrererrererrrrrreseser. 34
4-3. CFGA42i.EXE Main SCre€n (25 lINES)....uuuuuuuuuriirririeruiirreeurerreererenereererresesrerseererer.. 35
4-4. CFGA42i.EXE General Information Help SCreen.uuvuviiiviiiviriiieiiiiiiiiieneneeeeenieennen. 37
4-5. CFG42i.EXE Saving the File t0 DiSK.........uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiirereereereeeererreesrree.. 39
4-6. CFGA2I.EXE .42 Fil& FOIMMAL.uuuuuiiiiiiiiiiiiiiiiiiireeeeureeeererseerreeeseeereesesseserrrr——.. 40
4-7. CFGA42i.EXE HOtKeY TaSK Di@llOg.......uuuuuurrrriririiiiriiiireeiinirnenrenerersereesrssessreseseereenre. 42
4-8. CFGA2i.EXE POrt PiN(S) DIlOQ. ..uuuvuurruruuiiriiiiiiiiiieeeesrruesrensersssessresseeressereeererrerer.. 43
4-9. CFGA42i.EXE Input Pin Event Task DialOg.uuuuuuiruiuriieiiereieeiiiiiiiieeeernrereeereeeeree. 44
4-10. CFG42i.EXE Inactivity Time DialOg.uuvuuuuiruiriiiiiireiieeieiiirerinerenrerreeserneeeeeeereee.. 45
4-11. CFG42i.EXE 2nd Standby Task DialOg...........uuuuuuuuiuuriiririieieiiiiiierierrerreererereeeeee. 46
4-12. CFGA42i.EXE POrt UsSage DialOg.uuuuuuuruuiiiriiriiiiiieierurereeenenenereereeeeeseesresesrenre. 48
5-1. Sample Keyboard Controller COde.ccovviiiiiiiiiiii 54

MultiKey/42i Developer's Technical Reference

Vi

This page left blank.

viii MultiKey/42i Developer's Technical Reference

Tables

1-1. MultiKey 8042 Product COMPANISON.uuuuuuieaeaaeeiiiitiae e e e e e eettiiaa e e e e e e eeeeeanaaeaaaeeeeeennns 13
2-1. Pin Control Task DEfINItION.covviiiiiiiiiiiii 20
2-2. MEIMOIY IMAP. ettt ettt ettt e e ettt e ettt e e e e et e e e e et e e e e eaa e e aebaaeaennnnaaaes 21
2-3. Default Scan Code Conversion Table. ... 24
] = L1 LS =T o | 1 (= ST PRTTT 27
3-2. Standard ComMMANG SEL.ccoiiiiiiiiiiiiiii 28
3-3. Extended CommaNd SEt.oouuiiiiiiieeeiiieie ettt a e e e 29
3-4. Keyboard Controller Command Byte.ccovviiiiiiiiiiii 30
3-5. Keyboard CommandsS...........coooviiiiiiiiiii 31
3-6. AuXiliary COMMANGS.cceiiiiiiiiiiiiceeeeee e 31
4-1. SMI Function NUMDEr VAIUES.uiiiiiiiiiiii et 41
4-2. SMI Function Number Values (tasks rearranged).uuueeerereeerremeerreniinrrineenneennn. 41
5-1. MultiKey CONtrol ROULINESccovviiiiiiiiiiiieeeeee et 51
5-2. MultiKey SUPPOIt ROULINEScooviiiiiiiiiiiiieeeeeeeeee e 52
5-3. MUltiKey/42i BIOS ROULINESccoviiiiiiiiiiiieeeeeeeeee et 52
5-4. MUltiKey/421 SEtUP ROULINES........coviiiiiiiiiiieeeee e 53
5-5. MultiKey Keyboard and Mouse POST ROULINES............cccevvviiiiiiiiiiiiieeeeeeeee e 53

MultiKey/42i Developer's Technical Reference

This page left blank.

MultiKey/42i Developer's Technical Reference

Chapter 1
MultiKey/42i Overview

The following describes the design considerations of the MultiKey/42i Keyboard Controller
code. The design of the MultiKey/42i code follows the other MultiKey products, and is most
closely related to the MultiKey/42E (Enhanced 2K 8042 Keyboard Controller). The'i" in the
name MultiKey/42i stands for ‘improved’; (an improved 'green’ keyboard controller).
MultiKey/42i is also a 2K Byte 8042 product with extended security and power conservation
features added.

1.1 Standard/Extended Features

The MultiKey/42i code has been designed to fit in a standard 2K 8042, however the feature set
has been setup to best fit with a Super 1/0 chipset containing an 8042 processor. The following
isalist of the MultiKey/42i standard and extended features:

Standard 2K 8042 Keyboard Controller Code Size
Standard AT, PS/2, AX, OADG, Microsoft Natural Keyboard Support
Standard and Extended PS/2 M ouse Support
Transparent Software GateA20 Support

Keyboard and Mouse Port Swapping Support
RAM/ROM Scan Code Conversion Table

Password and KeyL ock Security Support

Dual Password (User & Supervisor) Support
Enable/Disable Security Pin Control task

Secure USB Password Validation Support

Secure Password (cannot be read or overwritten)
Secure Configuration (cannot be changed once locked)
Programmable HotKey and Task Support

QuickLock with Rotating LED Support

Inactivity Timer for Powering Down External Devices
Inactivity Invoked Security Support

Inactivity Indication (Flashing Scroll Lock LED)
External Input Detection & Task Support

External Input Enable/Disable Security Support

Power Restored based on Mouse, Keyboard, and External Input
OEM MultiKey/42i Configuration Utility

MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.1.1 Standard 2K 8042 Code Size

The 2KByte code size will allow MultiKey/42i code to be programmed into
any standard 8042 or Super 1/0O chipset that contains a 8042 processor. No
hardware GateA20 is required for the 8042 processor because MultiKey/42i
supports transparent software GateA 20 switching. The 8042’ s schematic
follows the PS/2 style architecture whether the design requires a PS/2 Mouse,
or not.

1.1.2 Standard/Extended Keyboard Support

MultiKey/42i is compatible with all types of keyboards including any AT,
PS/2, 84-key, 101/102-key, 105-key, 106-key, AX, OADG, or a Microsoft
Natural Keyboard.

1.1.3 Standard/Extended PS/2 Mouse Support

MultiKey/42i is compatible with all types of PS/2 pointing devices including
Trackballs, Touchpads, and Mice.

1.1.4 Transparent Software GateA20

GateA 20 commands are used to access system memory above 1IMB. They are
frequently used in Windows and Novell networking applications. GateA20
commands have a higher priority than Keyboard input operations. As machine
speed and software memory requirements have increased, the number of
GateA 20 commands have increased and the number of Keyboard and Mouse
input operations have decreased.

When MultiKey/42i is used, the Keyboard and Mouse data paths are not
disabled during GateA20 operations; this ensures that no Keyboard or Mouse
datais missed and increases the speed of each GateA20 command.

1.1.5 Keyboard/Mouse Port Swapping

In MultiKey/42i the System BIOS can select which external deviceisthe
Keyboard and which is the Mouse. Traditionally, Port0 is used by a Keyboard
and Portl is used by a Mouse, however, Port Swapping permits these ports to
be interchanged providing significant savings in Motherboard real estate. This
capability offers the benefit of Ease of Configurability with Two Identical
Ports: both PS/2 Mouse and Keyboard use 6-pin Mini-DIN connectors.

NOTE: If the System only has one device connector, it should be connected to Port0 and Port1
should be tied high.

2 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.1.6 RAM/ROM Scan Code Conversion Table

MultiKey/42i allows the System to support multiple Keyboard languages and
Keyboard layouts without using an added Device Driver loaded with the
Operating System. Languages can be selected, at BIOS Initialization (Boot
Time), by the SETUP program.

In addition, individual keys can be remapped, for example: The position of the
<Ctrl> can be swapped with <Caps L ock>, mimicking the original 84-key
Keyboard; this function is transparent to the operating system as 0S/2, DOS,
and Windows are.

The Scan Code Table is downloaded by the 0B8h and 0BBh Commands.

K CSTATE.3 determines which Scan Code Conversion table (RAM/ROM) is
used. KCSTATE.3 is accessed through the MultiKey variable interface (0B8h,
0BCh, & 0BDh Commands). This feature is available only on 8042’ s with 256
bytes of RAM (i.e. 8742AH, 8042AH, etc.).

1.1.7 Password and KeyLock Security

The Keyboard Password feature is provided by the Keyboard Controller. This
Password isin addition to the System BIOS Password support provided by
some Systems. The Keyboard Controller Password is from one to sixteen
characters and it is stored in the controller, making it a more secure machine
than a machine with only the System BIOS Password support.

Along with the Password support, MultiKey/42i offers KeyL ock supported on
Port1 bit 7 (P1.7), compatible with the original AT 8042 support. Both the
KeyLock and the Password have to be inactive before the user can use the
Keyboard or Mouse. If KeyLock is not used, P1.7 must be high for normal
operation.

1.1.8 Dual Password Support

MultiKey/42i extends the Password size from 8 to 16 characters and it has
added a second Password which could be downloaded to the Keyboard
Controller. This feature allows the Keyboard Controller to support separate
user and supervisor passwords. When both passwords are downloaded, a match
on either password disables security. The System can interrogate the Keyboard
Controller to determine which password was entered and choose to limit
machine access, if desired. If both passwords are identical, the first password
match gets the credit for disabling security.

MultiKey/42i Developer's Technical Reference 3

Chapter 1 - MultiKey/42i Overview

1.1.9 Security Pin Control Task

The Password Security feature can affect external hardware. When Security is
enabled, the Pin Control Tasks (LCK1TSK & LCK2TSK) of the loaded
passwords are executed. When either Password is entered, the corresponding
Pin Control Task is restored. For example, this feature can be used to lower
P1.3, which would prevent a cold reset from occurring until the Password was
typed in, which would raise P1.3 again.

Since there are two Passwords and two different Pin Control Tasks (LCK1TSK
& LCK2TSK), the machine's access can be limited by hardware pins on the
8042. In addition, since each Pin Control Task can affect multiple pins
simultaneously, one task can be configured as a subset of the other Pin Control
Task. The Pin Control Task can also notify the System by pulsing a Port Pin
and thereby causing an SMI.

1.1.10 Secure USB Password Validation

Through a combination of hardware and the Secure Controller Configuration,
MultiKey/42i can be configured to validate a password from USB emulation
legacy support without producing a hole in which the System or applications
would have access to the password or to the password validation path. The
password is checked against the USB legacy scan codes when this featureis
enabled (KCMISC.2 = 0) and Port1 hit2 (P1.2) is high. Therefore to complete
this feature, P1.2 should be connected to aline that is active high during SMM
mode.

1.1.11 Secure Password

The password can never be overwritten. Once the password is loaded, the
Keyboard Controller must be hard reset before the password can be rel oaded.
The password storage area cannot be read or written in the Keyboard
Controller memory. The MultiKey/42i Extended Commands which are used to
read and write the Keyboard Controller memory are blocked in the password
storage area.

1.1.12 Secure Controller Configuration

To prevent the Keyboard Controller’s configuration from being changed, and
there by compromising the Security, the System cannot change the
configuration once either Password has been downloaded. Once the Password
is loaded, the Keyboard Controller must be hard reset before the Keyboard
Controller’s configuration can be changed. The System only allows read access
to the Keyboard Controller’s memory once either password is loaded.

The write Controller memory Command, OBBh, is blocked providing a
Controller Configuration Lock. The MultiKey variable interface is not blocked
allowing non-Security related variables to be modified (example: Port
Swapping, RAM/ROM conversion table, Inactivity Timer value, LED flags,
and Controller Speed variables).

4 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.1.13 Programmable HotKeys

MultiKey/42i supports up to five HotKey combinations. The HotKeys Scan
Codes can be defined by the System BIOS. The default activate keys are the
Ctrl and Alt keys, however these Scan Codes can also be redefined by the
System BIOS. The System BIOS uses the MultiKey memory Commands
(0B8h, OBAh, and OBBh) to update the HotK ey related variables. Once the
Ctrl+Alt+HotKey Scan Code is detected, the corresponding Pin Control Task
is performed (KEY 1TSK - KEY5TSK).

HotKey 5 Pin Control Task (KEY5TSK) can be shared with the Inactivity
Timer based on TMRFLGS.1. This was done to conserve RAM and to allow
the Inactivity Timer to control two different tasks (for example: Lower P1.3
and activate QuickLock). A very efficient use of the configuration resourcesin
the case where Inactivity task is a compound event (above example) and a
HotKey QuickLock is desired, by setting the KEY5TSK to equal QuickLock.

This Pin Control Task alows any single or group of Portl pinsto be set,
cleared, or pulsed when the a HotK ey sequence is detected. In addition to
manipulating the Port 1 pin(s), the Pin Control Task can invoke Security, force
Inactivity, or toggle between RAM/ROM conversion table. Using the pulsing
feature, a HotKey can cause an SMI or other interrupt rather than IRQ1 or
IRQ12. During invocation, each HotK ey sets an internal variable
(FUNCTION) to indicate which HotKey was active. This allows the SMI
Handler to determine which HotK ey caused the SMI by reading through the
MultiKey Variable interface to the FUNCTION variable. The SMI Handler
must clear the FUNCTION variable after it has read the value, so shared SMls
can be distinguished.

NOTE: All HotKey sequences work when the keys are released. This prevents the System’ s shift
state flags (example: Ctrl and Alt state flags) from being left in the wrong state. QuickLock isan
example where no other keys are sent to the System after the HotK ey is detected.

1.1.14 QuickLock Indication

The Keyboard Controller Password, together with the HotK eys (QuickL ock),
permits the user to disable the Keyboard and PS/2 Mouse without exiting an
application. QuickLock is aHotKey configured with a unique scan code and its
HotKey Task is set to Enable Security. The Keyboard LEDs rotate to indicate
that QuickLock is enabled; the user must enter a Password before continuing.
Once the QuickLock HotKey sequence is released, the Keyboard and Mouse
remain locked until the Password is entered.

NOTE: Both the Keyboard Controller Password and the QuickL ock options require the
downloading of at least one Password to the Keyboard Controller. Depending on the specific
implementation, this may be done from SETUP or the Phoenix Password Utility.

MultiKey/42i Developer's Technical Reference 5

Chapter 1 - MultiKey/42i Overview

1.1.15 User Input Inactivity Timer

The Inactivity Timer monitors the amount of time that has elapsed since the
last Keyboard, Mouse, or External Input event, with an expiration interval
selected by the OEM or end-user (options include Off or atime from 30
seconds to 128 minutes). The expiration interval is set by the 0AFh Command
Set Inactivity Timer, and the value is stored in the variable TMRATES (two's
complement value).

One or two Pin Control Tasks (TMR1TSK and KEY5TSK based on
TMRFLGS.1) are performed after the Inactivity Timer expires. By setting the
KEYS5TSK to QuickLock , the Inactivity Timer shares HotKey 5's Pin Control
Task; this conserves RAM and allows the Inactivity Timer to control two
different tasks (for example, Lower P1.3 and activate QuickLock). This allows
any single or group of Portl pinsto be set, cleared, or pulsed when the
Inactivity Timer expires. In addition to manipulating the Port 1 pin(s), the Pin
Control Task can invoke Security or toggle between RAM/ROM conversion
table. Using the pulsing feature, the Inactivity Timer can cause an SMI or other
interrupt; it is not limited to IRQ1 or IRQ12. During invocation, each
Inactivity Tasks sets an internal variable (FUNCTION) to indicate that thisis
an Inactivity event SMI. This allows the SMI Handler to determine which
event caused the SMI by reading through the MultiKey Variable interface to
the FUNCTION variable. After it has read the value, the SMI Handler must
clear the FUNCTION variable so shared SMIs can be distinguished.

When in Standby mode (i.e. the Inactivity Timer has expired), an incoming
keystroke, mouse data, or external input event causes the opposite (except if
pulsed) Timer Task function to be performed. If the Timer Task lowered a pin,
the new activity raises the pin again. The new activity also re-triggers the
Inactivity Timer to the original TMRATES value.

Figure 1-1 shows one implementation example controlling Video, Monitor
Power, and CPU Clock Speed. The BIOS or a SETUP option would configure
the Inactivity Task to lower P1.3 only or to lower both P1.3 & P1.4 based on
whether or not a VESA compatible monitor was attached. The Inactivity pin
P1.3, xINACTIVEL, speed switches the CPU and powers down the Video
DAC which forces the VESA Video Monitor into Standby. The Inactivity pin
P1.4, xINACTIVEZ2, will completely shut off the Power to the monitor,
whether it isa VESA Video monitor or not.

6 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

Figure 1-1. Inactive Pin Usage Diagram.

8042

P1.3

P1.4

WD90C30 VGA

76 | yexBLNK VSYNGHCl — vsYNC

+5V HSYNG———— HSYNC

10K % Video DAC

xPDN

30 xINACTIVE1 D>

31 xINACTIVE2 D> +5V

10K 10K Avesem AV9155

SC20 2XCLK——— CLK2
Sc21
Sc22 1IXCLK—— CLK1

Power Supply

Assuming the Inactivity Timer value is not zero (disabled), the corresponding
MultiKey/42i configuration for the hardware shown in Figure 1-1, isas
follows; TMR1TSK 'should be set to lower P1.3 or P1.3-2 (lower pin:
00000000b with pin data 00001000b or 00001100b). Optionally, the
KEY5TSK could be combined with TMR1TSK to make a compound Inactivity
Task (TMRFLGS.1 =0), and KEY5TSK could be setup to invoke QuickL ock
(set Security: 11010000b with no pin data 00000000b).

NOTE: When Activity isrestored MultiKey/42i will perform the opposite function task. To
prevent Security from being cleared, bit7 of Pin Control Task (Pulse Pin flag) is set.

1.1.16 Inactivity Invoked Security

The Inactivity Timer can be configured to set QuickLock when it expires. This
allows the user to walk away from the System, and it will power down and
secure itself (see Password and QuickL ock support), requiring the user to type
in a Password before continuing.

MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.1.17 Inactivity Indication

MultiKey/42i flashes the Scroll Lock LED (according to,TMRFLGS.0) to
indicate that the System is powered down due to a Green-PC event. Since the
monitor may be off, this flashing may be the user notification that the machine
isin STANBY mode rather than completely powered off. A keystroke will
restore full power mode.

The Inactivity Indicator has a higher priority than the QuickLock Indicator. I
QuickLock is enabled and the LEDs are rotating, and then the Inactivity Timer
expires, the Scroll Lock LED will flash. After Keyboard or Mouse activity, the
Scroll Lock LED will stop flashing and all the LEDs will rotate until a
password is typed.

If the Inactivity Indicator isturned Off (TMRFLGS.0 = 0), and QuickLock is
enabled, rotating LEDs indicate that QuickLock is enabled.

1.1.18 External Input Detection

MultiKey/42i monitors two sets of Port1 pins for activity. The Keyboard
Controller responds to the event if its pulse length is at least 30ns. After the
event is detected, the pin is debounced for 120ms to prevent the performance
of multiple Pin Control Tasks.

MultiKey/42i has two Input Pin masks TST1PIN and TST2PIN, configured by
using the Extended Memory Commands 0B8h and OBBH. The corresponding
Pin Control Task (PIN1TSK or PIN2TSK) is performed when a pin in the Input
Pin Mask wiggles. PIN1TSK and PIN2TSK variables are also configured using
the Extended Memory Commands 0B8h and OBBh. If both masks include the
toggling pin, then both Pin Control Tasks are performed.

This Pin Control Task alows any single or group of Portl pinsto be set,
cleared, or pulsed when the a External Input is detected. In addition to
manipulating the Port 1 pin(s), the Pin Control Task can set or clear Security,
set or clear Standby mode, or toggle between RAM/ROM conversion table.
Using the pulsing feature, an External Input can cause an SMI or other
interrupt rather than IRQ1 or IRQ12. In invocation, each External Input pin
mask sets an internal variable (FUNCTION) to indicate which task went
active. This allows the SM| Handler to determine which external event caused
the SMI by reading through the MultiKey Variable interface the FUNCTION
variable. The SMI Handler must clear the FUNCTION variable after it has
read the value, so shared SMI’ s can be distinguished.

MultiKey/42i can guarantee detecting a signal pulse greater than 30us without
any external hardware, however with an externa flip/flop nanosecond pulses
could be detected. An example of a configuration which would prevent the
System from going into Standby mode if the Video Screen was being updated
is shown below in Figure 1-2. The flip/flop latches the input so the
MultiKey/42i code can detect the input change and clears the flip/flop only if
any event was detected. With constant activity the Keyboard Controller would
clear the flip/flop every 120ms, the debounce rate.

8 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

Figure 1-2. Video Memory Write Detection Diagram.

+V 8042
10K

741574

12
VIDEOWR 1

EXTINPUT
D aql® Ut 32

xQ Ds—/

P1.5

13

xINPUTACK 33

P1.6

The corresponding MultiKey/42i configuration for the hardware shown in
Figure 1-2, isasfollows: Both TST1PIN & TST2PIN Input Pin masks should
be set to P1.5 (00100000b), PIN1TSK should be set to set Activity (clear
Standby: 00110000b with no pin data 00000000b), and PIN2TSK should be set
to pulse low P1.6 (10000000b with pin data 01000000b) to reset the flip/flop.

NOTE: The System BIOS should reset the flip/flop manually (with 0C7h & 0C8h Commands)
when configuring the rest of the MultiKey/42i features, since the power-up state of the flip/flop is
indeterminate.

An alternate configuration for the External Inputs is shown below in Figure
1-3. In this case the MultiKey/42i code is setup to watch the RS-232 Serial
Port (Serial Mouse, Modem, etc.) to prevent the System from entering Standby
mode and to watch the Coffee-Break! button to force Standby mode. The
diodes on the SERIALRCYV line trandlate the plus and minus voltage supply of
the RS-232 to a 0 to 5 volts level for the 8042.

Figure 1-3. Front Panel with Activity Detection Diagram.

System Front Panel 8042
‘77777777777’777777 +5V
! I
| Coffee-Break Button ! 10K
I A . xSTANDBY 32| py 5
I | -
v ‘
! I
+5V
10K 1N914
SERIALRCV XACTIVITY 38| by g
1N914

The corresponding MultiKey/42i configuration for the hardware shown in
Figure 1-3, isasfollows: TST1PIN Input Pin mask should be set to P1.5
(00100000b), TST2PIN Input Pin mask should be set to P1.6 (01000000b),
PIN1TSK should be set to set Inactivity (set Standby: 01110000b with no pin
data 00000000b), and PIN2TSK should be set to set Activity (clear Standby:
00110000b with no pin data 00000000b. The setting Standby mode would

1 The Coffee-Break button puts the system in a low power mode. Password protection is available for this
option. The Coffee-Break button is OEM configurable. It can be a dedicated front panel key or a HotKey option.

MultiKey/42i Developer's Technical Reference 9

Chapter 1 - MultiKey/42i Overview

exactly match the Inactivity Timer expiring and both of the Inactivity Timer's
Pin Control Tasks would be performed.

1.1.19 External Input Invoked Security

As shown in Section 1.1.18, the External Input event can force the Keyboard
Controller into a Standby mode, which could have as an associated task to
invoke QuickL ock. However, referring to Figure 1-3, the PIN1TSK could be
setup to invoke QuickLock (set Security: 01010000b with no pin data
00000000b) directly without causing the Keyboard Controller to go into
Standby mode. This allows the user to push the Front-Panel button and walk
away from the System, and it will be secure (see Password and QuickL ock
support), requiring the user to type in a Password before continuing. This
configuration directly mimics the origina KeyLock on AT machines.

1.1.20 Activity Restored by Mouse, Keyboard
and External Input

MultiKey/42i allows the user to resume from Standby mode in a variety of
natural ways. System operation resumes in response to the movement of the
PS/2 Mouse, a Keystroke, or an Inactivity Timer Command. The System can
be configured to resume from external events such as: Serial Mouse
movement, Modem Ring, Parallel Port usage, and Video Memory updates.

Upon new activity detection the Inactivity Timer isre-triggered and if it had
already expired the Pin Task would be restored. If athe Timer Task Lowered a
pin, the new activity will raise the pin again. If the Timer Task was configured
to pulse low an external SMI pin when entering Standby mode, then
MultiKey/42i will pulse low the same external SMI pin when activity is again
detected. The Activity SMI FUNCTION value will be one greater than the
Inactivity SMI FUNCTION value.

1.1.21 OEM MultiKey/42i Configuration Utility

Phoenix provides a MultiKey/42i Configuration Utility which allows the OEM
to completely setup each unique platform and save the configuration to disk.
After running the Configuration Utility, every feature of the platform is 100%
testable. The Configuration Utility even calibrates the 8042 clock and adjusts
the MultiKey/42i compensation factor so all timings will be accurate.

The output of the Configuration Utility is an ASCII file which can be directly
used by the System BIOS to configure the MultiKey/42i every time the System
is rebooted.

10 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.2 Architectural Considerations

Some features, traditionally supported by the MultiKey/42 family have been removed to meet

the timing and code space requirements of the MultiKey/42i. |ssues presented by these changes

are minor when the target motherboard is a new design. These support issues include:
Keyboard Controller must run at 12MHz
PS/2 style Keyboard Controller support only
Some IBM reserved RAM locations are used
Only the Keyboard LED state is saved
Extended Keyboard and Mouse Echo Commands

1.2.1 12MHz KBC Platform Support

To guarantee support for all Keyboards the greatest interval through the Main
Loop is 27.5ms. Since the Keyboard and PS/2 Mouse devices are polled, the
Keyboard Controller must be able to detect the device Startbit which can be as
small as 30s.

1.2.2 PS/2 Style Platform Support

An 8042 running MultiKey/42i code is not functionally equivalent to the same
controller under other MultiKey/42 products. To meet code space restrictions
the Environment Autodetection (AT or PS/2), Keyboard Controller Interface
State Switching (AT or PS/2), and the AT Style device transmission code were
removed.

Keyboard Controller Interface State Switching allows a PS/2 Style
motherboard without a PS/2 Mouse to be configured asa AT Style Keyboard
Controller that cannot respond to Auxiliary Device Commands.

MultiKey/42i allows you to build a PS/2 Mouse-less System with the PS/2
Mouse clock and data lines pulled up. The System recognizes a PS/2 Style
8042 but will not detect a PS/2 Mouse.

MultiKey/42i Developer's Technical Reference

11

Chapter 1 - MultiKey/42i Overview

1.2.3 IBM Defined RAM Locations

This seems to be a minor issue, but it is documented here for completeness.
The IBM RAM locations are defined from 20h to 3Fh, and are accessed by
Commands 20h-3Fh (read RAM) and 60h-7Fh (write RAM). These commands
were undocumented commands in the AT Style 8042 and then formally
documented in the PS/2 Style 8042. Only one RAM location was documented:
location 20h, the:Keyboard Controller Command Byte (KCCB). The Phoenix
clean room documented a few additional locations but most were still reserved.
IBM released a second 8042 with only seven of the original commands
(KCCB; Password NULL1, NULL2, SCAN1, & SCANZ2; and two addition
locations 3Dh & 3Fh for temporary storage). The portable designs have also
limited the number of valid commands to save memory needed to support this
feature.

MultiKey/42i uses atotal of eight IBM Reserved RAM locations for memory
and Main Loop considerations.

1.2.4 Keyboard Controller State Saving

To save code space MultiKey/42i only shadows the Keyboard LED state, it
does not shadow the Typematic Rate, the Scan Code Set, and Keyboard
Enable/Disable flag. The Keyboard Controller sets the following default
settings: Typematic Rate = 10.9 characters/sec; Scan Code Set = 2; Keyboard
is Enabled. Since these features are rarely changed and most desktop Systems
do not cut power to their Keyboards, these changes are barely noticable.

1.2.5 Extended Keyboard and Mouse Echo
Commands

The MultiKey/42i Keyboard and PS/2 Mouse Echo Commands (0D2h & 0D3h
respectively) have been extended beyond the original IBM design to more
closely follow the regular Keyboard and PS/2 Mouse data path. These
commands were extended for USB legacy Keyboard Controller and device
emulation. The Keyboard Scan Code, sent to the Keyboard Controller viathe
0D2h Command, is checked against the HotKey list and the Inactivity Timer is
restored. Special caution was used, along with hardware considerations, with
this command and the password, to prevent a program from determine the
password by sending an exhaustive set of Scan Codes until security was
disabled. The Secure Password Validation support provides USB HID class
device security for USB legacy support identical to the PS/2 Keyboard/Mouse
security support.

The HotKey5 Pin Control Task has been linked with the Inactivity Timer Pin
Control Task to increase functionality without using additional memory.

12 MultiKey/42i Developer's Technical Reference

Chapter 1 - MultiKey/42i Overview

1.3 Product Differentiation

The number of features vary greatly between each of the MultiKey products designed to run on
the Intel 8042, 8042AH, and 80C42 family of products. One of the 80C42 products,
MultiKey/42L, is not a desktop solution and will be left out of the comparison. Table 1-1 lists
features supported by the MultiKey 8042 line of desktop products.

Table 1-1. MultiKey 8042 Product Comparison.

MultiKey Feature 142 IC42 | 142G | [42E 142i
Standard AT, PS/2, AX, OADG, Microsoft Natural Keyboard support Yes Yes Yes Yes Yes
Standard and extended PS/2 M ouse support Yes Yes Yes Yes Yes
Keyboard Controller code fitsin 2K Bytes 8042 Yes - - Yes Yes
Keyboard Controller code capable of running from 6MHz - 12MHz Yes Yes Yes Yes -
Autodetection of legacy AT vs. PS/2 Platform Yes Yes Yes - -
AT vs PS/2 Keyboard Controller Command mode Yes Yes Yes Yes -
Transparent Software GateA20 support Yes - - Yes Yes
Hardware GateA 20 support - Yes Yes - -
Keyboard and Mouse Port-Swapping support - Yes Yes Yes Yes
RAM/ROM Scan Code Conversion Table - Yes Yes Yes Yes
Password and Keylock Security support Yes Yes Yes Yes Yes
Dual Password (User & Supervisor) support - - - Yes Yes
Secure Password (cannot be read or overwritten) - - - - Yes
Secure USB Password Validation support - - - - Yes
Programmable HotK ey and Task support - - Yes Yes Yes
Quicklock with rotating LED support - - Yes Yes Yes
Watchdog or Delayed Event Timer - - Yes - -
Inactivity Timer for Powering Down external Devices - - Yes - Yes
Five separate Inactivity Timers - - Yes - -
Inactivity Invoked Security support - - Yes - Yes
Inactivity Indication (Flashing Scroll Lock LED) - - Yes - Yes
Temporary Kbd/Aux Lockout Timer (Eat-a-Key Timer) - - Yes - -
L ockout Indication (Flashing al LEDs) - - Yes - -
External |nput Detection & Task support - - Yes - Yes
External |nput Enable/Disable Security support - - - - Yes
Edge and Level External Input Detection - - Yes - -
Suspend Power Down for complete Power Management - - Yes - -
Power Restored based on Mouse, Keyboard, and External Input - - Yes - Yes
Secure Configuration (cannot be changed once locked) - - - - Yes
Port 1 “Input Port” Emulation - - Yes - -
BIOS Configurable Interrupt Control - Yes Yes - -
OEM MultiKey Configuration Utility - - Yes Yes Yes
Enable/Disable Security Pin Control Task - - Yes Yes Yes

MultiKey/42i Developer's Technical Reference 13

Chapter 1 - MultiKey/42i Overview

This page left blank.

14 MultiKey/42i Developer's Technical Reference

Chapter 2
MultiKey/42i Hardware Perspectives

This chapter discusses the MultiKey/42i interface with the Intel 8042. The five main topics
include: microprocessor features, schematics of AT and PS/2 platforms, with and without mouse
interrupt hardware; pin control tasks; the Standard Memory Map; and the default Scan Code
Conversion Table.

2.1 Keyboard Controller Microprocessor

The Intel 8042, 8742, and 8742AH Keyboard Controllers are members of Intel's Universal
Peripheral Interface family of Microcontrollers and feature the following:

Pin, Software and Architectural Compatibility with all Intel UPI-41 and UPI-42 Products
8-bit CPU

Up to 12 MHz Operation

8-bit Data Bus Interface Registers

Interval Timer/Event Counter

Two 8-bit TTL Compatible I/O Ports

Resident Clock Oscillator Circuits

DMA, Interrupt, or Polled Operation Supported
Expandable I/O

Interchangeable ROM and EPROM Versions
2048 x 8 ROM Size, 256 x 8 RAM Size

Available in 40-Lead Plastic (DIP) & 44-Lead Plastic Leaded Chip Carrier (PLCC)
Packages (see Figure 2-1)

MultiKey/42i Developer's Technical Reference

15

Chapter 2 - MultiKey/42i Hardware Perspectives

Figure 2-1. 8042 In DIP & PLCC Package Types.

/ [
TESTO [1 40 [vCGC BYoe O n o
XTAL1 [2 39 [TESTH SUEERooBd oo
XTAL2 (| 3 38 [] P2.7 X XXXFHFZ>F0O 00
xRESET [| 4 37 [J P26 LI I I E]
XSS (15 36] P25 65432 14443424140
xCS [6 35 [] P2.4 xCS] 7 o 39 [] P24
EALC]7 34] P1.7 EALC] 8 38] P1.7
xRD [| 8 33] P16 xRD [] 9 37 1 P16
A0]9 32] P15 A0] 10 36 [] P15
XWR] 10 31 0 P14 xWR] 11 351 P14
syNe Cl11 8942 3000 p1s NC [12 8042 34 NC
Do [12 29 [P1.2 SYNC [13 33[] P13
D1 13 28 [P1.1 Do [] 14 32] P12
D2 [] 14 27 O P1.0 D1 [] 15 31 [P11
D3 [15 26 [VDD D2 [] 16 30 [P1.0
D4 (] 16 25 [PROG D3 [17 29 [VDD
D5 O 17 24 (] P23 1819202122232425262728
D6 [18 23 [0 P22 Ooogooooood
D7 [19 22 [1 P2.1 TwernBoo-Nng
vss [20 21 [J P20 >ZE$$$§
DIP Pin Configuration PLCC Pin Configuration

2.2 Schematics

Figures 1-2, 2-3, and 2-4 show the recommended schematics for the AT platform with no PS/2
Mouse, AT platform with PS/2 Mouse, and PS/2 platform with PS/2 Mouse respectively. The
AT platform has “edge sensitive” interrupts and the PS/2 platform has “level sensitive”
interrupts. Some of the considerations in the MultiKey/42i schematic design are:

One circuit design for AT Platform without a PS/2 Mouse
One circuit design for AT Platform with a PS/2 Mouse
One circuit design for PS/2 Platform with a PS/2 Mouse
Compatible Keyboard and PS/2 Mouse interface

Original and Mini-DIN Device Connectors

Support for KeyLock and CRT jumper

Support for Software GateA20 on P2.1

Support for Software CPU Reset on P2.0

Interrupt support IRQ1 and IRQ12 pins

Port 1 Pins for System Control features

The schematic shown in Figure 1-2 closely reassembles the original PS/2 Platform design with
the PS/2 Mouse lines deleted. Unlike MultiKey/42 however, MultiKey/42i does not support the
original AT Platform design, however it provides the same support asillustrated in Figure 2-2.
The Keyboard connector is shown as the original large DIN connector, however, the Mini-DIN
could easily be substituted. The TEST1 pin must be pulled up since there is no internal pull-up,
and MultiKey/42i would interpret alow as the constant stream of PS/2 Mouse data (data errors
to be precise). Finaly, the PS/2 Mouse interrupt request line (IRQ12) has been added to allow
the Mouse interrupt service routine to clear the Keyboard Controller of dataif a Mouse
Command is ever issued. Without IRQ12, the Keyboard Controller would hang while waiting for
the System to read the Mouse Command timeout codes.

16

MultiKey/42i Developer's Technical Reference

Chapter 2 - MultiKey/42i Hardware Perspectives

Figure 2-2. MultiKey/42i AT Platform without a PS/2 Mouse.

+5V

10K g % % 10K
74HCTO05

8042
19 38 1 2
D7 D7 P27
D6 18 | pg P2.6 [37 {>Q S
D5 17 | ps p25 36 IRQ12 IRQ12
D4 16 | py po.g |35 IRQ1 IRQ1
D3 15| p3 p23 24,
D2 14| py poo 23
D1 13| oy P2 |22 GATEA20 GATEA20
DO 12| po p2o (21 RC RC
XIOR 12 XRD
xlOwW xWR
X8042CS 64 xcs p1.7 |34)'fggk%%"T KEYLOCK
A2 91 o P1.6
XRESET 44 YRESET P15 32 %
+10MHz 2| XTAL1 P14 3y
-10MHz 3| xTAL2 P13 30
v syne P12 22
T 40| yoo p11 28 xKBDCLK 1] <
26 | oo p1o |27 KBDDATA KBDDATA HE$
0 235
25 PROG 3 8¢
54 xsS +5V 41 S€
L 5] £
7] Ea TEST1 |39 LV s go
KBDGLK
on GND TESTO (1 —*
47pF T *{ A7pF
In Figure 2-3, there is the addition of the AUXCLK, xAUXDATA, xXAUXCLK, & AUXDATA
pins along with two more open-collector inverters to provide PS/2 Mouse support. The device
connectors shown are the Mini-DIN connectors compatible with the PS/2 Style Keyboards and
Mice.
Figure 2-3. MultiKey/42i AT Platform with a PS/2 Mouse.
+5V
10K % g 10K
8042 74HCTO05
19 38 1 2
D7 D7 P27
D6 18| pg P2.6 [32 {>O 3{>c4
D5 17 | ps p25 36 IRQ12 IRQ12
D4 16 | py p2.4 [35 1RO IRQ1
D3 15| pg p23 [24 St
D2 14| pp pao 23 S
D1 13 | oy paq |22 GATEA20 GATEA20
DO 12| po p2o (21 BC RC
KEYLOCK
xIOR41gc xRD KBDDATA B
xlow ——— o yWR BV 2|28
x8042cs —— 84 xcs p1.7 | 34 KEYLOCK — 32 &
Ao—— 91 a9 P16 XCGA CRT g5
y v KBDCLK |4 8¢
XRESET—— 44 yRESET P15 [32 X 5 &<
+10MHz ——2 XTAL1 P14 3Ly +——6) X9
-10MHz 1‘3 XTAL2 P1.3 %0—/ -
ARy %gc : f 28~ AUXDATA AUXDATA 1
. KBDDATA £s
26 | ypp P1.0 22 BV | 2|58
25| pROG +——3| g &
L——5d xss —14 38
7] Ea TEST 38 ¥AUXCLK XAUXGLK 5 86
20 1 XKBDGLK x £
GND TESTO —6) 20
\

47pF »[*I I 1: 47pF

Two flip/flops and a decode of a Port60h read are added in Figure 2-4. The decode of the
Port60h read clears the flip/flops to support the “level sensitive” Interrupts on the PS/2 Platform.

MultiKey/42i Developer's Technical Reference

17

Chapter 2 - MultiKey/42i Hardware Perspectives

The flip/flops are added to guarantee correct operation on fast Systems where the MultiKey/42i
software emulation of the flip/flops may not respond fast enough to prevent a second Interrupt
from being generated.

This paragraph is intended to resolve some of the confusion that has resulted from the interrupt
support through IRQ1 and IRQ12 pins. After the execution of the EN FLAGS instruction on the
origina AT Platform, the 8042 was put into a mode where the Output Buffer Full (OBF) and the
Input Buffer Full (IBF) status register flags were reflected on P2.4 & P2.5. The OBF flag & P2.4
were raised when data was placed in the Output Buffer and lowered when the system read
Port60h. On the original PS/2 Platform, P2.5 was needed for the Mouse Interrupt line so IBM
designed flip/flops on those pins as shown in Figure 2-5, Schematic 1. The software pulsed both
pins as shown in Figure 2-9, Case 1, setting the flip/flops. The flip/flops were cleared by aread
of Port60h, this mimicsthe original AT Platform 8042.

Some additional confusion resulted from the presence, on the PS/2 Platform, of alevel sensitive
Interrupt Controller while it lacked edge sensitive Interrupt Controller, like the AT Platform.
The reason for this apparent contradiction is that an edge sensitive PIC (Programmable Interrupt
Controller) is not like other edge triggered devices, it requires the Interrupt Request Line to
remain high until the first INTA (Interrupt Acknowledge) cycle.

Figure 2-4. MultiKey/42i PS/2 Platform with a PS/2 Mouse.

+5V

wi T 2 I i

741574
741827
1 74L504 2
2 12 1 2 2y ol RQ12
—= e s q o
xapé—
8042 74HCTO5 -
19 38 1 2
D7 D7 P27 3
D6 18| pg pag |37 ’\>Q 3{>C4 210
Ds 17 pa pos 36 IRQ12 12/ 8 IRQ1
D4 16 | g poa 85 IRQT 11
- 8
D3 15| pg P23 [24 St xQpt—
D2 14| pp pao [23 9{>c8 v
} 13
D1 13 | oy paq |22 GATEA20 GATEA20
DO 12 | po p2o {21__RC RC
KEYLOCK
XIOR 8d xrD KBDDATA M5
xIOW S xWR u KEYLOGK +V 2 §§
X8042CS xCS P17 3o g
o 9 a0 P16 XCGA CRT HEL
XRESET——4d xRESET P15 32/ <y XKBDCLK 5| 5£
+10MHz 2| ALY P14 31 2
-10MHz 3 | xTAL2 P13 30 -
v syne p12 129,
b 40 “ 128~ AUXDATA AUXDATA .
VGG P11 KBDDATA 12
26 | ypp P1.0 22 BV | 2|58
25 { prOG T1—3 88
L——5d xss 438
7 laa XAUXGLK XAUXGLK &s
2] EA TEST1 YKBDOLK S| % e
F GND TESTO +—1e| 35
v

47pF /[1 I 1;47pF

MultiKey/42i is built with Software flip/flops as its default, allowing it to work with Schematics
1, 2, and 3 in Figure 2-5. Schematic 4 is an old design of an EISA system and will not work with
the Software Flip/Flop.

18 MultiKey/42i Developer's Technical Reference

Chapter 2 - MultiKey/42i Hardware Perspectives

Figure 2-5. 8042 with Mouse Interrupt Hardware.

+5V
10K % 74LS74 +5V
. be 10K :I>
‘3‘ p aft IRQO1 3
P2.4 >
ols P2.4] 74|_s1761 IRQO1
N 215 q}2 IRQ12
pas — M
110 xQ 8
12 9
hos 5 >D Q IRQ12 P ¢
) ort60
xQ 38—
RdPort60 T13
Schematic 1 | Schematic 2
Schematic 3 | Schematic 4
P2.4 IRQO1 P2.4 IRQO1
P25 IRQ12 P25 1>>o2 IRQ12
741504

To work with Schematic 4, the Keyboard Controller must be configured as Case 2 of Figure 2-6.

Figure 2-6. 8042 with Mouse Interrupt Software.

2-3us
-
P24 — 1
pos — 1
o Case 1
P2.4 & P2.5 "Pulsed (Works with Schematic 1 only)
2-3us OBF goe‘s False
p2.4
po.s — |
Case 2
Software "Flip/Flop" on P2.4, P2.5 is "Pulsed" (Works with Schematics 1,2,4)
OBF goes False
P24 —| —
B
p2.5
Case 3
Software "Flip/Flops" on P2.4 & P2.5 (Works with Schematics 1,2,3)

The 10k Ohm resistor pull-ups on the Keyboard and PS/2 Mouse interface provide compatible
drives with that of the IBM AT and the IBM PS/2 8042 designs (which keyboard manufactures
expect).

MultiKey/42i Developer's Technical Reference 19

Chapter 2 - MultiKey/42i Hardware Perspectives

KeyLock is available on all platforms and works in conjunction with the password security. If
the KeyL ock feature is not needed make sure P1.7 is tied high. The Jumper statusis read by the
System BIOS with the 0COh Command (Read Input Port).

2.3 Pin Control Task Definition

One of the basic structures throughout the MultiKey/42i configuration is the Pin Control Task
variable. The Pin Control Task variable defines what to do when an event (HotK ey detection,
Inactivity Timer expires, Activity isrestored, Security is enabled, Security is disabled, or an
External Input Event) occurs. The Pin Control Task variable istwo bytesin size and its
definition is shown in Table 2-1.

If the function "equal set/clear Portl pins and BitF" is True after 2.4ms BitE of the Pin Control
Task is XORed and the task re-performed. In addition the Pulse Pin Task does not changed when
restoring to the original Keyboard Controller State. For example: If P1.3 is lowered when the
Inactivity Timer expires, P1.3 will be raised when Activity isrestored. However, if PL.3is
pulsed low when the Inactivity Timer expires, P1.3 will be again pulsed low when Activity is
restored.

Therefore, if the Pin Control Task is a function other than setting or clearing the Port 1 pins, and
it is desired not to reset the function when restoring the original Keyboard Controller State, then
set the Pin Control Task BitF True. For example: If Security is enabled when the Inactivity
Timer expires and BitF is False, then Security will be disabled when Activity is restored.
However, if Security is enabled when the Inactivity Timer expires and BitF is True, then
Security will not change when Activity is restored.

Table 2-1. Pin Control Task Definition.

Bit Description
F Pulse Port Pin Function after 2.4ms
E Set or Clear Function

D-C Type of Function (2 bits)

11 - Set or Clear Standby mode

10 - Toggle RAM/ROM Conversion Table
01 - Set or Clear Security

00 - Set or Clear Port 1 Pin

B-8 Function Number, range 0 - 15 (4 hits)

7-0 Port 1 Pin Data Mask (8 bits)

20

MultiKey/42i Developer's Technical Reference

Chapter 2 - MultiKey/42i Hardware Perspectives

2.4 Standard Memory Map

MultiKey/42i allows the PhoenixBI1OS or the OEM Keyboard utilities to read, except for the
Password storage & Memory Index locations, the RAM with the extended commands 0B8h
through OBBh. The same RAM locations can be written with the extended commands 0B8h

through OBBh, only until one or both Passwords are loaded. The MultiKey/42i Memory Map is
detailed in Table 2-2. Bit definitions for the RAM variables are included in the table. These bits

described all the diagnostic as well as state saving/restoring information needed to understand

the MultiKey/42i internal states.

Table 2-2.

Memory Map. (sheet 1 of 3)

Symbol

RAM Location
(Range)

Description

TEMP

00h-01h

Temporary Subroutine Scratch Registers (2 bytes)

KCMISC

02h

Keyboard Controller Miscellaneous Flags
Bit7 - Auxiliary Expecting Response (bit1)
Bit6 - Auxiliary Expecting Response (bit0)
Bit5 - Keyboard Expecting Response (bit1)
Bit4 - Keyboard Expecting Response (bit0)
Bit3 - Auxiliary Expecting Four Responses
Bit2 - No D2h Command Password checking
Bitl - Password Loaded, Memory is Read-Only
Bit0 - Security is Enabled

KCSTATE

03h

Keyboard Controller State Flags
Bit7 - OBF Datais not pending
Bit6 - Internal Device Command flag
Bit5 - Auxiliary Device Disabled
Bit4 - Keyboard Device Disabled
Bit3 - Use RAM Scan Code Conversion Table
Bit2 - Not Waiting for Keyboard LED Data
Bitl- AT Environment (0=PS/2)
Bit0 - Keyboard/Auxiliary Ports Not Swapped

TEMP

04h-05h

Temporary Scratch Register

TIMEOUT

06h

Keyboard Controller Timeout Flags
Bit7 - STS7:Parity Error
Bit6 - STS6:Timeout Error
Bit5 - STS5:Auxiliary Device Output Buffer Full
Bit4 - STS4: Security is Inactive
Bit3 - Reserved
Bit2 - Transmission Internal
Bit1 - Transmission Type (bit 1)
Bit0 - Transmission Type (bit 0)

TEMP

07h

Temporary Scratch Register

STACK

08h-017h

Processor Stack (16 bytes)

KSTATEL

018h

Keyboard Scan Code Set and LED State
Bit7 - Keyboard Disabled at Device
Bit6 - Reserved
Bit5 - Scan Code Set Bitl
Bit4 - Scan Code Set BitO
Bit3 - Reserved
Bit2 - CapsLock LED
Bitl - Num Lock LED
Bit0 - Scroll Lock LED

* |ndicates an IBM defined RAM location which isinitialized, but not used.

MultiKey/42i Developer's Technical Reference

21

Chapter 2 - MultiKey/42i Hardware Perspectives

Table 2-2. Memory Map. (sheet 2 of 3)

Symbol RAM Location Description
(Range)

KSTATE2 01%h Keyboard Typematic Delay and Rate

Bit7 - Transparent Security Mode

Bit6 - Typematic Delay Bitl

Bit5 - Typematic Delay Bit0

Bit4 - Typematic Rate Bit4

Bit3 - Typematic Rate Bit3

Bit2 - Typematic Rate Bit2

Bitl - Typematic Rate Bitl

Bit0 - Typematic Rate Bit0
HOTKEYS 01Ah HotKey State flags

Bit7 - HotKey Work Pending

Bit6 - Hold Key1 Active

Bit5 - Hold Key2 Active

Bit4 - HotKey5 Key Active

Bit3 - HotKey4 Key Active

Bit2 - HotKey3 Key Active

Bitl - HotKey2 Key Active

Bit0 - HotKey1 Key Active
HOTTASK 01Bh Detect HotK ey Pending Task Offset
TST1PIN 01Ch External Input Event Pin Mask (PIN1TSK)
TST2PIN 01Dh External Input Event Pin Mask (PIN2TSK)
TMRFLGS 01Eh Timer Miscellaneous State flags

Bit7 - Flashing LED Counter (bit1)

Bit6 - Flashing LED Counter (bit0)

Bit5 - Reserved

Bit4 - Reserved

Bit3 - Flashing LED Task Pending

Bit2 - Keyboard Controller Suspended

Bitl - KEY5TSK isonly for HotKey 5

Bit0 - Flashing LED when Suspended
P1VALUE 01Fh The Port 1 Shadow Latch Register
KCCB 020h Keyboard Controller Command Byte

Bit7 - Reserved

Bit6 - Convert Scan Codes

Bit5 - Auxiliary Disabled

Bit4 - Keyboard Disabled

Bit3 - Reserved

Bit2 - System Flag

Bitl - Auxiliary Interrupt Enabled

Bit0 - Keyboard Interrupt Enabled
RETRY* 021h Number of times to Resend a Transmission
KBDRSP* 022h If not 0, expect response from Keyboard
KSRSND* 023h Count of RESENDS sent to Keyboard
PENDING 024h Storage for the OBF Pending Data
INIT* 025h IBM RESERVED
LEDDATA 026h Storage for the Flashing/Rotating LED Pattern
TMRATEL 027h Timer value 380us, Device Bit Time
TMRATE2 028h Timer value 2.4ms, Byte Receive Time
TMRATE3 029h Timer value 11.7ms, Start Bit Time
INIT* 02Ah-02Ch IBM RESERVED (3 bytes)
BREAK 02Dh Break-Code (00h or 80h) from Keyboard
LOCOUNT 02Eh Compensation Timer (0.12 seconds)
MDCOUNT 02Fh Mid-Range Timer (30.0 seconds)
AUXRSP* 030h If not 0, expect response from AuxDevice
ARESND* 031h Count of RESENDs sent to AuxDevice

* |ndicates an IBM defined RAM location which isinitialized, but not used.

22

MultiKey/42i Developer's Technical Reference

Chapter 2 - MultiKey/42i Hardware Perspectives

Table 2-2. Memory Map. (sheet 3 of 3)

Symbol RAM Location Description
(Range)
P1INPUT 032h The lasted checked Port 1 Input value
PWNULL1 033h Sent when Password enabled (if not 0)
PWNULL2 034h Sent when Password disabled (if not 0)
FUNCTION 035h Interrupt Function Request Vaue
PWSCAN1 036h Ignored Scan Code when Password = enabled
PWSCAN2 037h Ignored Scan Code when Password = enabled
TMRATE4 038h Timer value 0.12s, Compensation Time
TMRATES 03%h Timer value 30s-128m, Inactivity Time
HICOUNT 03Ah Inactivity Timer (range 30sto 128m)
03Bh-03Fh IBM RESERVED (5 bytes)

KEY1TSK 040h-041h HotKey1 Pin Control Task Value (2 bytes)
KEY 2TSK 042h-043h HotKey2 Pin Control Task Value (2 bytes)
KEY3TSK 044h-045h HotKey3 Pin Control Task Value (2 bytes)
KEY4TSK 046h-047h HotKey4 Pin Control Task Value (2 bytes)
KEY5TSK 048h-049h HotKey5 & Inactivity Timer Pin Control Task Value (2 bytes)
LCK1TSK 04Ah-04Bh Normal Password Pin Control Task Value (2 bytes)
LCK2TSK 04Ch-04Dh Extended Password Pin Control Task Value (2 bytes)
TMRITSK 04Eh-04Fh Inactivity Timer Pin Control Task Value (2 bytes)
PINITSK 050h-051h External Input Eventl Pin Control Task Value (2 bytes)
PIN2TSK 052h-053h External |nput Event2 Pin Control Task VValue (2 bytes)
HOTKEY1 054h HotKey1 Scan Code Storage
HOTKEY2 055h HotKey2 Scan Code Storage
HOTKEY3 056h HotKey3 Scan Code Storage
HOTKEY4 057h HotKey4 Scan Code Storage
HOTKEY5 058h HotKey5 Scan Code Storage
HLDKEY1 05%h 1st Hold Key Scan Code Storage
HLDKEY2 05Ah 2nd Hold Key Scan Code Storage
INDEX 05Bh MultiKey Memory Index
PW1INDX 05Ch Normal Password Index
PW1AREA 05Dh-06Dh Normal Password Storage Area (17 bytes)
PW2INDX 06Eh Extended Password |ndex
PW2AREA 06Fh-07Fh Extended Password Storage Area (17 bytes)
SCANTBL 080h-0FFh RAM loaded Scan Code Conversion Table (128 bytes)
* Indicates an IBM defined RAM location which isinitialized, but not used.

MultiKey/42i Developer's Technical Reference 23

Chapter 2 - MultiKey/42i Hardware Perspectives

2.5 Default Scan Code Conversion Table

Table 2-3 lists the content of the default Scan Code Conversion table. Thistableis stored in
memory locations 080h through OFFh, see Table 2-2 (Symbol SCANTBL).

Table 2-3. Default Scan Code Conversion Table. (sheet 1 of 3)

Index Value Description
000h OFFh Error (Overrun)
001h 043h F9
002h 041h F7
003h 03Fh F5
004h 03Dh F3
005h 03Bh F1
006h 03Ch F2
007h 058h F12
008h 064h Reserved
00%h 044h F10
00Ah 042h F8
00Bh 040h F6
00Ch 03Eh F4
00Dh 00Fh Tab
00Eh 02%h ~ '
00Fh 05%h Reserved
010h 065h Reserved
011h 038h Left Alt
012h 02Ah L eft Shift
013h 070h Reserved
014h 01Dh Left Ctrl
015h 010h Q
016h 002h 1
017h 05Ah Reserved
018h 066h Reserved
01%h 071h Reserved
01Ah 02Ch z
01Bh 01Fh S
01Ch 01Eh A
01Dh 011h w
01Eh 003h @ 2
01Fh 05Bh Reserved
020h 067h Reserved
021h 02Eh C
022h 02Dh X
023h 020h D
024h 012h E
025h 005h $ 4
026h 004h # 3
027h 05Ch Reserved
028h 068h Reserved
02%h 03%h Space
02Ah 02Fh \Y
02Bh 021h F
02Ch 014h T
02Dh 013h R
02Eh 006h % 5
02Fh 05Dh Reserved

24

MultiKey/42i Developer's Technical Reference

Chapter 2 - MultiKey/42i Hardware Perspectives

Table 2-3. Default Scan Code Conversion Table. (sheet 2 of 3)

Index Value Description
030h 06%h Reserved
031h 031h N
032h 030h B
033h 023h H
034h 022h G
035h 015h Y
036h 007h N6
037h 05Eh Reserved
038h 06Ah Reserved
03%h 072h Reserved
03Ah 032h M
03Bh 024h J
03Ch 016h U
03Dh 008h & 7
03Eh 00%h * 8
03Fh 05Fh Reserved
040h 06Bh Reserved
041h 033h <,
042h 025h K
043h 017h |
044h 018h O (upper case |etter 0)
045h 00Bh) 0 (number zero)
046h 00Ah (9
047h 060h Reserved
048h 06Ch Reserved
04%h 034h > |
04Ah 035h ?
04Bh 026h L
04Ch 027h R
04Dh 01%h P
04Eh 00Ch -
04Fh 061h Reserved
050h 06Dh Reserved
051h 073h Reserved
052h 028h v
053h 074h Reserved
054h 01Ah { [
055h 00Dh + =
056h 062h Reserved
057h 06Eh Reserved
058h 03Ah Caps Lock
05%h 036h Right Shift
05Ah 01Ch Return
05Bh 01Bh }]
05Ch 075h Reserved
05Dh 02Bh T\ (US) ~ # (102-key)
05Eh 063h Reserved
05Fh 076h Reserved

MultiKey/42i Developer's Technical Reference

25

Chapter 2 - MultiKey/42i Hardware Perspectives

Table 2-3. Default Scan Code Conversion Table. (sheet 3 of 3)

Index Value Description
060h 055h Fn (Phx Special)
061h 056h i\ (102-key)
062h 077h Reserved
063h 078h Reserved
064h 07% Reserved
065h 07Ah Reserved
066h 00Eh Backspace
067h 07Bh Reserved
068h 07Ch Reserved
06%h 04Fh 1 End
06Ah 07Dh Reserved
06Bh 04Bh 4 Left Arrow
06Ch 047h 7 Home
06Dh 07Eh Reserved
06Eh 07Fh Reserved
06Fh 06Fh Reserved
070h 052h 0 Ins
071h 053h . Dd
072h 050h 2 Down Arrow
073h 04Ch 5
074h 04Dh 6 Right Arrow
075h 048h 8 UpArrow
076h 001h Esc
077h 045h NumL ock
078h 057h F11
07%h 04Eh +
07Ah 051h 3 PgDn
07Bh 04Ah -
07Ch 037h *
07Dh 04%h 9 PgUp
07Eh 046h Scroll Lock
07Fh 054h Sys Req (84-key only)

26 MultiKey/42i Developer's Technical Reference

Chapter 3
MultiKey/42i Software Interface

The command set supported by the MultiKey/42i code is a superset of the IBM-compatible
standard command set. All standard IBM commands are supported.

3.1 Command Invocation

The System writes commands to Port64h; the data associated with the command is written to
Port60h. The System reads all auxiliary device (PS/2 mouse) and keyboard data at Port60h. The
System reads the 8042 status at Port64h. Keyboard commands and data are written to Port60h.
Auxiliary Device commands are written to Port60h after the MultiKey/42i Write Auxiliary
Device (0D4h) Command; Auxiliary Device Datais sent with the same procedure.

The 8042 Status Register (read of Port 64h) indicates whether the 8042 is ready to accept
another command or if data is ready from the last command. The System can only send data or
commands to the 8042 if the IBF flag (Input Buffer Full, Bitl of the Status Register) is false.
The data from the 8042 is valid only if the OBF flag (Output Buffer Full, BitO of the Status
Register) istrue. Before issuing a command to return data, the OBF and IBF should both be
false. After waiting for the OBF flag to go true, the datais read from Port60h.

3.2 Status Register

The Status Register is an eight bit read only register accessed via Port64h. An IN on Port64h
provides the status shown in Table 3-1.

Table 3-1. Status Register.

Bit Default Description
7 0 Parity Error
1 = last byte received had incorrect parity
6 0 General Timeout
1= Last transmission timed out before completion
5 0 Auxiliary Device Output Buffer Full
1= Auxiliary output buffer contains data from the Auxiliary Device
4 0 Inhibited Switch

1 = The devices are uninhibited

0 = Password or Keylock is enabled
3 1 Command/Data (F1)

1 = System wrote to Port64h

0 = System wrote to Port60h

2 1 System Flag (F0)

Value = Value of the System bit in the Keyboard Controller Command Byte
1 0 Input Buffer Full (IBF)

1 = Input buffer contains data for the Keyboard Controller
0 0 Output Buffer Full (OBF)

1 = Qutput buffer contains data for the System

MultiKey/42i Developer's Technical Reference 27

Chapter 3 - MultiKey/42i Software Interface

3.3 Standard Commands

Phoenix Technologies MultiKey/42i supports the Standard Command Set described in Table 3-2.

Table 3-2. Standard Command Set.

Command Description
00h-1Fh Read the contents of the designated RAM Iocations (20h-3Fh) and send it to System
20h-3Fh Read the contents of the designated RAM Iocations (20h-3Fh) and send it to System
40h-5Fh Get abyte of datafrom System and write into one of locations (20h-3Fh)
60h-7Fh Get abyte of datafrom System and write into one of locations (20h-3Fh)
Adh Test Normal Password
Returns OFAh if Normal Password is loaded
Returns OF1h if Normal Password is loaded
A5h Load Normal Password
L oads Password until a'0' is received from the System (max. size = 16 characters)
A6h Enable Password Security
Enables the checking of keystrokes for a match with the passwords
A7h Disable Auxiliary Device's Interface (PS/2 Mouse)
A8h Enable Auxiliary Device's Interface (PS/2 Mouse)
A%9h Test Auxiliary Device Clock and Data
AAh 8042 Self Test
Returns 055h if successful self test
ABh Test Keyboard Clock and Data lines
ACh Reserved (diagnostic dump)
ADh Disable Keyboard Device's Interface
AEh Enable Keyboard Device's Interface
COh Read the Input Port(P1) and send data to the System
Clh Continuously puts the lower four bits of Port1 into the STATUS Register
C2h Continuously puts the upper four bits of Portl into the STATUS Register
DOh Send Port2 value to the System
D1h Only set/reset GateA 20 line based on the System data Bit1
D2h Send data back to the System asiif it came from the Keyboard
D3h Send data back to the System asiif it came from the Auxiliary Device (PS/2 Mouse)
D4h Output next received byte of datafrom System to Auxiliary Device (PS/2 Mouse)
EOh Reports the state of the test outputs
FXh Pulse only RC (thereset line) low for 6nsif the Command Byteis even

28 MultiKey/42i Developer's Technical Reference

Chapter 3 - MultiKey/42i Software Interface

3.4

Phoenix Technologies MultiKey/42i supports the Extended Command Set described in Table

3-3.

Extended Commands

Table 3-3. Extended Command Set.

Command

Description

A2h

Test Extended Password
Returns OFAh if Extended Password is loaded
Returns OF1h if Extended Password is not loaded

A3h

L oad Extended Password
L oads Password until '0' is received from the System (max. size = 16 characters)

AFh

Set Inactivity Timer value from 0.5 to 128 minutes (zero disables timer)

B8h

Setup Phoenix Extended Memory Access INDEX

Boh

Get current Phoenix Extended Memory Access INDEX

BAh

Get current Phoenix Extended Memory referenced by INDEX
Cannot read the Password Storage Area

BBh

If neither Password isloaded, write Phoenix Extended Memory referenced by INDEX.
Cannot write the Password Storage Area. Once the Password isloaded, memory is locked

BCh - BDh

Read/Write the following MultiK ey variables referenced by INDEX:
LENGTH (0) Number of MultiKey variables
KCSTATE (1) Keyboard Controller State flags
TMRFLGS (2) Timer Miscellaneous State flags
TMRATE1 (3) Timer value 380ms, Device Bit Time
TMRATE2 (4) Timer value 2.4ms, Byte Receive Time
TMRATE3 (5) Timer value 11.7ms, Start Bit Time
TMRATE4 (6) Timer value 0.12seconds, Compensation Time
TMRATE5 (7) Timer value 30 seconds to 128 minutes, Inactivity Time
KSTATEL (8) Keyboard Scan Code Set & LED state
KSTATE2 (9) Keyboard Typematic Delay & Rate
FUNCTION (A) Interrupt Function Request value

C7h

Sets Port1 bits corresponding to System data bits that are set

C8h

Clears Port1 bits corresponding to System data bits that are set

Coh

Sets Port2 bits corresponding to System data bits that are set

CAh

Clears Port2 bits corresponding to System data bits that are set

D5h

Read MultiKey code revision level (2 bytes). The digits automatically filled by PVCS Source
Control System. MultiKey/42i revision level starts at 4.10 to distinguish it from MultiKey/42
(1.20+), MultiKey/C42 (2.10+) and MultiK ey/42E (3.10+).

D6h

Read Version Information (2 bytes). MultiKey/42i returns Bytel = 81h and Byte2 = ACh.
Bytel Byte2

B7 - Processor Type (bit2) B7 - IRQ12 software flip/flop

B6 - Extended MultiKey Interface B6 - cause IRQ before OBF

B5 - KBD Scanning support B5 - IRQ1 software flip/flop

B4 - Power Down support B4 - Reserved

B3 - Processor type (bitl) B3 - Clock speed (bit3)

B2 - PS/2 mouse emulation B2 - Clock speed (bit2)

B1- AT platform B1 - Clock speed (bit1)

BO - Processor type (bit0) BO - Clock speed (bit0)

D7h

Read MultiKey model numbers (3 bytes). The CONVERT filled digitsarein Hex format (for

example: AAh, 55h, 00h)

MultiKey/42i Developer's Technical Reference

29

Chapter 3 - MultiKey/42i Software Interface

3.5 Keyboard Controller Command Byte

The internal status is defined by the Keyboard Controller Command Byte (KCCB). The KCCB
residesin RAM at location 20h. The KCCB can be read and written with the special commands
listed in Table 3-4. Note that the KCCB isread using a 20h Command and written to using a 60h
Command.

Table 3-4. Keyboard Controller Command Byte.

Bit Default Description
7 0 Reserved = 0
6 1 IBM PC Compatibility Mode

1= Trandate Scan Codesto IBM PC standard before passing it to the System
0 = Passuntransated Scan Codes to the System

5 1 Disable Auxiliary Device
1= Auxiliary Device's Interface disabled (PS/2 mouse)
4 0 Disable Keyboard
1= Keyboard Device's | nterface disabled
3 0 Reserved =0
2 1 System Flag

1= the System is executing POST as the result of a shutdown or warm boot

0 = the System is executing POST as the result of a cold boot
NOTE: The value of thishit iswritten to the System Flag Bit of the Status Register
(Bit2 of aread of Port64h)

1 0 Enable Auxiliary Output Buffer Full Interrupt
1= Aninterrupt to System is generated when abyte is placed into the Auxiliary
Output Buffer (IRQ12)

0 0 Enable Keyboard Output Buffer Full Interrupt
1= Aninterrupt to System is generated when a byte is placed into the Output
Buffer (IRQ1)

30

MultiKey/42i Developer's Technical Reference

Chapter 3 - MultiKey/42i Software Interface

3.6

Any Command/Data written to Port60h is automatically transmitted to the Keyboard by the
Keyboard Controller if MultiKey/42i is not in awaiting for data mode. See Table 3-5 for all
Keyboard Commands. In the case of atwo-byte Keyboard Command, for example, Set LEDs
(OEDh), both the Command and Data are written to Port60h.

Table 3-5. Keyboard Commands.

Keyboards and Auxiliary Device
Commands

Command Description

EDh Set LEDs

EEh Echo

EFh Invalid command

EOh Select alternate scan code set

Fih Invalid command

F2h Read ID bytes

F3h Set typematic delay and rate

Fah Enable Keyboard

F5h Disable Keyboard and set defaults
Féh set defaults

F7h* Set all keys typematic

F8h* Set all keys make/break

Foh* Set all keys make only
FAh* Set all keys typematic/make/break
FBh* Set key type typematic

FCh* Set all keys type make/break
FDh* Set key type make only

FEh Resend the last transmission

FFh BAT, Reset the defaults and buffers

* Commands F7h through FDh are normally used for Character Set 3

The Auxiliary Device Command sequence is executed in two steps:

1. Write an 8042 Command D4h (Write Auxiliary Device) to Port64h.

2. Write Command/Data to Port60h.

The above sequence is executed twice for two-byte auxiliary device commands, such as the Set
Scaling (OE7h) Command (see Table 3-6).

Table 3-6. Auxiliary Commands.
Command Description Command Description
E6h Reset scaling FOh Set remote mode
E7h Set scaling F1lh Invalid command
E8h Set resolution F2h Read device type
E9h Status Request F3h Set sampling rate
EAh Set stream mode F4h Enable auxiliary device
EBh Read data F5h Disable auxiliary device
ECh Reset wrap mode Féh Set default values
EDh Invalid command F7h - FDh Reserved
EEh Set wrap mode FEh Resent
EFh Invalid command FFh Reset

MultiKey/42i Developer's Technical Reference

31

Chapter 3 - MultiKey/42i Software Interface

This page left blank.

32 MultiKey/42i Developer's Technical Reference

Chapter 4
MultiKey/421 Configuration Utility

The Configuration Utility is designed to work with the Phoenix MultiKey/42i product. The
MultiKey/42i Configuration Utility allows an OEM to configure and test the new Keyboard
Controller configuration immediately. The configuration can also be saved as an assembler
ASCII file, so it can be combined with the System BIOS routines (as shown in Chapter 5,
MultiKey Keyboard Controller Routines).

4.1 Configuration Utility Overview

The MultiKey/42i Configuration Utility, CFG42i.EXE , supports:
Automatically detects and gets the current MultiKey/42i Configuration
Definition of the HotKey Scan Codes, Tasks and SMI1 Numbers
Definition of the Input Pin Events, Tasks and SM1 Numbers
Definition of the Inactivity Timer, Configuration, Tasks and SMI Numbers
Definition of the Dual Passwords, Configuration, Tasks and SMI Numbers
Definition of the Port Usage, Clock Rate and the ROM/RAM Conversion Table

MultiKey/42i Developer's Technical Reference

33

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-1. CFG42i.EXE Main Screen.

{cycopyriontoPRoEATR°TEERABTBGTES 29962 °RattIRey7a2T°CoATFTgaration°gverceayecee
UAAAAAAAAAAAAQA Key A¢
3 Active Key ©°°Ctptee3

3 Active Key © Alt AA HotKey Task AAAAAAAAAAA sMI A;

3 HotKey 1 © (ud aaa 3 00h 3

3 Hotkey 2 © (uu 3 aaa 3 00h 3

3 Hotkey 3 © (uu 3 Gaa 3 (Q0h 3

3 Hotkey 4 © (uu 3 aaa 3 (00h 3

3 Hotkey 5 © 0O 3 Enable Security. 3 .03h =

AAAAAAAAANAAADAAAAARAARAARAAAARAARAAAAAAAAAARAARAAAAAD

UARAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA sMI A

3 InputPin 1 © ’ aaa 3 00h 3
20 3 3 Q0h 3

AMAAMAAAAARAADARAAARAAARAAAARAAARAAAARAAAR AAAAAAARAAARAAL
UAAAAAAAAAAAAOA Timer Value AAA Second Task AAA Inactivity Indicator AAAAAAAAAA;
3 Inactivity © aaa 3 Share HotKey5 3 Flashing the Scroll Lock LED 3

AAAAAAAAAAAAAXA Standby TaskAAAAAAAAAAA SMI AAA Resume Task AAAAAAAAAAA sMI # A~
3 Inactive 1 © Lower Portl 00001000b 3 0lh 23 Raise Portl 00001000b 3 02h 3
3 Inactive 2 © Enable Security 3 03h_ 3 Enable Security 3 04h 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Normal/Password 1 AAAAA Extended/Password 2 AAA Security Mode A;
3 Password © 0000000OOOOOUOUUG 3 (G000GGGGGAaGAaGAaA00 3 Block Commands 3
RAAAAAAARAAAAXA Enable Task SMI AAA Disable TaskAAAAAAAAAAA SmI # A~
3 Security 1 © aaa 3 00h = aaa 3 01h =3
3 Security 2 © o.b0ag o3 00h 3 o 3 0lh 3
AAAAAAAAAAAAAXA Key
3 Ignore Key © aau 3 D2h:Pswd test 3 Disabled 3 Send when Enabled 3 uud 3
3 Ignore Key © G040 3 when P1.2=1 AAAAAAAAAAAU Send when Disabled 3 (Gaa 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Miscellaneous AARAA,
3 Port Usage © Ports are not Swapped (Keyboard on Port0O, Mouse on Portl) 3
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate 3
3 Conversion © Use ROM ScanCode Conversion Table 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

4.1.1 Starting the Configuration Utility

The main Configuration Utility screen is shown in Figure 4-1; it is displayed
by typing CFG42i /40 at the DOS prompt. Since the Configuration Utility
issues extended MultiKey Keyboard Controller commands, the program should
be run from the regular DOS prompt and not from a Windows DOS Box. The
Configuration Utility performs several functions when loading the program.
The first function is to check the Command Line for switches (examples: /40
sets 40 line mode, /F fakes MultiKey/42i Hardware). The next function isto
verify that this platform has a MultiKey/42i product (unless the /F switch was
invoked). If the Configuration Utility does not find MultiKey/42i Hardware,
the program immediately exits back to the DOS prompt, and displays the
following message:

Figure 4-2. MultiKey/42i Configuration Error Message.

MultiKey/42i Configuration Utility (Ver 1.4).
Type CFG42i /? for Command Line Usage & Help.

ERROR: No MultiKey/42i processor found.

The Configuration Utility then evaluates the Command Line for a
Configuration Filename. If a Configuration Filename isfound it is loaded and
the information is downloaded to the MultiKey/42i Keyboard Controller and
the program immediate exits back to the DOS prompt. If no Configuration file
is found, the current MultiKey/42i Configuration is read from the Keyboard
Controller and displayed as the program data (see Figure 4-1).

34

MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

4.1.2 The Main Screen Layout

The Configuration Utility screen (see Figure 4-1) is shown in 40 line mode, so
all of the windows are visible at once. If the Configuration Utility isrunin 25
line mode (see Figure 4-3), only the first three windows would be visible and
Function key F4 would swap between the two pages.

Figure 4-3. CFG42i.EXE Main Screen. (25 lines)

S‘T“ ?ﬁ%lﬁﬁaéﬁ?§°T88ﬁﬁ8i8§?8§°i§§8°°Muif.Ré??ﬁﬁ?°68ﬁ??§ﬁ?8%?8ﬁ°27e?°i il R
8 Active Key 9 Cfr¥°°§ o .

8 Active Key Alt AA HotKey Task ARAAARAAAAA sy Aé

8 Hotkey 1 8 F1 2 Force Standby Mode 2 00h

g8 Hotkey 2 8 aoa B aaa 8 ooh 8

g8 Hotkey 38 aoa B aaa 8 ooh 8

g HotKey 4 9 aan 8 aaa 8 ooh 8

3 Hotkey.5.8 & Enable. Securit 8 03n. .8

Y
UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA SMI A
2 InputPin 1 © 00010000b 3 Force Standby Mode 3 05h 3
3 InputPin 2 © aau 3 aau 3 00h 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Timer Value AAA Second Task AAA Inactivity Indicator AAAAAAAAAA;
3 Inactivity © 30.0 minutes 3 Share HotKey5 3 Flashing the Scroll Lock LED 3
AAAAAAAAAAAAAXA Standby TaskAAAAAAAAAAA SMI AAA Resume Task AAAAAAAAAAA sMI # A~
3 Inactive 1 © Lower Portl 00001000b 3 0lh 23 Raise Portl 00001000b 3 02h 3
3 Inactive 2 © Enable Security 3 03h_ 3 Enable Security 3 04h 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AAALy]ARAR

' f[°°ﬁ°i°°°° 2°°1nt6°°° §°°Coi8°r’°° 3° Bagedn > 5°°Load " 6 Gave " E§8°E>‘Z°%°° '

There are five separate windows, the HotKey Configuration Window isthe
first window, followed by the External Input Event Window, the Inactivity
Window, the Password Window, and finally the Miscellaneous Feature
Window. The active window is indicated by the bright border color and the
fact that the cursor isvisible in that window. From the program initialization,
the HotKey Configuration Window is the first window made active (or
selected). Each window can be selected in turn with the TAB key. Even if the
Configuration Utility was run in 25 line mode, the TAB key will swap to page
two after the third window and back to page one after the fifth window.

4.1.3 Program Control Overview

The TAB key will select the next window. SHIFT key + TAB key will select
the previous window. Once awindow is selected (active), the separate
ARROW keys and the number pad keys will move the cursor to the value or
feature which requires changing. Each selected value or feature can be
modified by pressing the ENTER key and selecting the desired options from
the Dialog Box. The ESC key will abort the Dialog Box without changing the
value or feature. Any numeric value can be immediately typed in and accepted
by pressing the ENTER key. If either the ARROW keys or ESC key are
pressed before the ENTER key, the value is restored to the original value.

Numeric values entered will be post-processed and may be modified if they are
not in the valid range for that variable. Some values and features may have
dependencies on other features and may alter the other values or features.

MultiKey/42i Developer's Technical Reference 35

Chapter 4 - MultiKey/42i Configuration Utility

4.1.4 Program On-Line Help

Pressing the F1 key will provide Program Information for the currently
selected window. Pressing the SHIFT key + the F1 key provide General
Program Information (i.e. non-window specific), as shown in Figure 4-4. The
General Information Help Screen provides additional background and user
instructions. The General Help Screen has two pages, a program functional
overview and alist of all active keys. The General Help also has a complete
list of all the valid Command Line switches.

All of the specific window Help Screens are only one page long and at the top
of the Help Screen remind the user how to get to the General Program
Information Screen.

36 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-4. CFG42i.EXE General Information Help Screen.
°(C)Cﬁp???gﬁt°Pﬁ6@ﬁ?R°Yé€ﬁﬁ6|6@?é§ 1998°°MattIREy7221°CoATTgaration°gverccayece
UAAAAAAAAAAAAOQA Key Ac
3 Active Key © Ctrl
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA SMI Ac

3 Hotkey 1 © (uu 3 aaa 3 00h

3 Hotkey 2 © (uu 3 aaa 3 00h =

3 Hotkey 3 © (ud 3 Gaa 3 (Q0h 3

3 HotKey 4 © (uu 3 aaa 3 00h =

3 Hotkey 5 ©° Q 3 Enable Security 3 03h s
AAAAAAAAAAAAADAAAAARAAAAAAAAAARAAAAAAAAAARAAAAAAARAARD
UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA sMI Ag
3 InputPin 1 © Gaa 3 Gaa 3 (Q0h 3
3 InputPin 2 © aau 3 aau 3 00h s

AAAAARAAAAAAADAAARAAAAAL

UAAAAAAAAAAAAOA Timer Value AAA Second Task AAA Inactivity Indicator AAAAAAAAAA;
3 Inactivity © aaa 3 Share HotKey5 3 Flashing the Scroll Lock LED 3
ARARARAAAAAAAXA Standby TaskAAAAAAAAAAA SM1 AAA Resume Task AAAAAAAAAAA SMI # A
3 Inactive 1 © Lower Portl 00001000b 3 0lh 23 Raise Portl 00001000b 3 02h 3
3 Inactive 2 © Enable Security 3 03h 3 Enable Security 3 04h s

Ev Help EFTITITITITOITOOOOOITOIDOIIIIIIIIninininirirneneninininiririenenenimims

° General Program Information (Page 1 of 2) ©
° Esc -- Exits to DOS or puts away the current active Filecard or Dialog. ©
© Help -- Provides specific information for the currently Selected Window. ©
© Info -- Displays the actual values of the Keyboard Controller variables. ©
© Color -- Allows the Color and Monochrome attributes to be modified. o
© Load -- Loads pre-existing MultiKey/42i Configuration file from the Disk. ©
© Save -- Saves the MultiKey/42i Configuration to an Ascii file on the Disk. ©
© PrtScn -- Captures the Screen Image and appends it to the SCREEN.TXT file. ©
° Tab -- Selects the Next (Shft Tab = Previous) set of Features (Window). ©
© Arrows -- Along with Home, End, PgUp, & PgDn keys, provide Cursor movement. ©
© Enter -- Brings up a Dialog prompting the user for Data input allowing °
° the MultiKey/42i features to be configured. °
o o
© > The Display Attributes will be saved to disk (.CFG file) and reloaded the ©
© next time the program is run. Deleting the .CFG file will reset Defaults. ©
o o
© Phoenix Technologies <Esc> or <F1> Next Page_ °

AA
PAAAAAAARAAAAAAAAAARAAAAAAAAAAAAARAAAARAAAAARAAAAAAAAAARAAAARAAAAAAARAARAAAAAAAD
1 Help 2°°1Afg°°° 3°°COtBpe° gocccceeee goopgagece g°°3agacc° BSE°ERit°°

4.1.5 Keyboard Controller Information

The Configuration Utility displays the MultiKey/42i Keyboard Controller
information when Function key F2 info, is pressed. The information Dialog
Box displays the Keyboard Controller variables that are affected by the various
feature and value settings. These Keyboard Controller variables are primarily
intended for the Keyboard Controller engineers, since the variable names
corresponds to Keyboard Controller source code names. The two second beep
isa“Basic program timing integrity” check.

MultiKey/42i Developer's Technical Reference 37

Chapter 4 - MultiKey/42i Configuration Utility

4.1.6 Configuration Utility Screen Attributes

The Configuration Utility allows all of the screen text attributes to be modified
by pressing Function key F3 Color. The Color Attribute Dialog Box displays
two sets of numbers for each text type (TitleBar, Headers, and so on), the first
column lists the Color Video mode values and the second lists the Mono Video
mode values. These attributes will be saved to disk in the CFG42i.CFG file, so
the next time the program is run these same attributes can be used.

To modify an attribute, first select the attribute with the ARROW keys, typein
the new attribute number and press the ENTER key. Moving the cursor or
pressing the ESC key before pressing the ENTER key, will restore the entry’s
origina attribute. The upper nibble of the attribute number is the background
color and the lower nibble of the attribute number is the foreground color.
There are atotal of 16 foreground colors. Thereis one special case background
color (vaue = 8) which indicates a transparent background, where the
foreground text is put over the existing background color. The most significant
bit of the attribute traditionally indicates blinking, however, the VGA Video
has been reprogram to allow 16 background color minus the transparent color
giving atotal of 15 background colors.

4.1.7 Saving the Configuration to Disk

The MultiKey Configuration can be saved to disk at anytime. Pressing
Function key F6 Save, brings up the directory filecard as shown in Figure 4-5.
For the first second, the top line of the filecard displays the directory sort

one second the directory is made active, any file or directory can be selected
by pressing the ENTER key. Selecting a directory will change directories and
resort the files. Selecting afile will allow afile to be overwritten.

38 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4- 5 CFG42i EXE Saving the File to Disk

AAOA Key Ac
3 Active Key © Ctrl
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA sMI Ac

3 HotKey 1 © (ud aaa 3 00h

3 Hotkey 2 © (uu 3 aaa 3 00h =
3 HotKey 3 © (ug 3 Gaa 3 (Q0h 3
3 HotKey 4 © (uu 3 aaa 3 00h =
3 Hotkey 5 ° Q 3 Enable Security 3 03h 3

UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA SMI Ag

3 InputPin 1
3 InputPin 2

AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Timer Value AAA Second Task AAA Inactivity Indicator AAAAAAAAAA;

3 Inactivity ©

AAAAARAAAAAAAXA Standby TaskAAAAAAAAAAA SM1 AAA Resume Task AAAAAAAAAAA SMI # A
3 Inactive 1 © Lower Portl 00001000b 3 0lh 23 Raise Portl 00001000b 3 02h 3
3 Inactive 2 © Enable Security 3 03h 3 Enable Secut1t¥ ,,,,, 04h 3

ARAARAARAARAADAAAAARAAAAAAAARAARAARAAAAAAAARAARAARAARAAAET
ElllllllIHHllllllllllllllllIHHHHHHHHHHHHH% Save EITITITITITE

o
o

8
SA_ o !
8 B:& DEFAULT. 42| 8
8 C:8 NORMAL.4 8
8>p:83 °8EMBLES Zﬁi°° 8
8 E:8 TEST1.421 8
8 1:8 TST.421 8
8 J:§ 8
8 K:§ 8
8 R:§ 8
8 S:§ 8
8 W:§ 8
8 Y:§ 8
8 Z:§ 8
8 3 8
8 8 .8
BAA AAD

i°ﬁé’iﬁ°°° 2°°Tnt6°°° 3°°Cofor°® 4°°°°°°°°° 6°°f6ad°°° 6 save ESC°Exit™”

aaa 3 aaa 3 00h 3
auaa 3 auaa 3 00h 3

aaa 3 Share HotKey5 3 Flashing the Scroll Lock LED 3

b}AAAAAAAAAAA

Pressing the TAB key will move the cursor to the File Specification area,
which allows the user to specify the path and filename. If wildcards are
included in the filename, the directory will be resorted to the new sort
parameters. Pressing the TAB key again will move the cursor to the Drive
Select area. If the cursor is moved and a new drive is selected the directory
will be resorted again.

Pressing the Function key F1 help, will provide help for the directory filecard.
Pressing the ESC key or Function key F6 Save, will abort the Saving process.
The saved MultiKey/42i Configuration file can be recalled at anytime, using
Function key F5 Load. The MultiKey/42i Configuration file (.42i) is saved as
an ASCI|I file, so it can be modified by anormal ASCII editor, if desired. This
allows the data to be incorporated into the System BIOS very easily. In
Chapter 5, the kbdCfgController routine is a sample routine which configures
the MultiKey/42i Keyboard Controller based on the .42i file data. The format
of the . 42i fileis shown in Figure 4-6.

MultiKey/42i Developer's Technical Reference 39

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-6. CFGA42i.EXE .42i File Format.
MULTIKEY/Z421 CONFIGURATION

kcState DB 001h ; (1) Keyboard Controller State flags
kecTmrFlgs DB 000h ; (2) Timer Miscellaneous State flags
kcTmRatel DB OF7h ; (3) Timer value 380us, Device Bit time
kcTmRate2 DB 0C4h ; (4) Timer value 2.4ms, Byte Receive time
kcTmRate3 DB 000h ; (6) Timer value 11.7ms, Start Bit time
kcTmRate4 DB OCFh ; (6) Timer value 0.5s, Flashing LED time
kcTmRate5 DB 000h ; (7) Timer value 30s-128m, Inactivity time
kcKStatel DB 000h ; (8) Keyboard ScanCode Set & LED State
kcKState2 DB 000h ; (9) Keyboard Typematic Delay & Rate
keMisc DB 004h ; Keyboard Controller Miscellaneous flags
kcTstlPin DB 000h ; External Input Event Pin mask (PIN1TSK)
kcTst2Pin DB 000h ; External Input Event Pin mask (PIN2TSK)
kcPswNul 11 DB 000h ; Sent when Password enabled (if not 0)
kcPswNul 12 DB 000h ; Sent when Password disabled (if not 0)
kcPswScanl DB 000h ; Ignored ScanCode when Password = enabled
kcPswScan2 DB 000h ; Ignored ScanCode when Password = enabled
kcHotTasks DW 000FOh, 00000h, 00000h, 00000h, 000D3h

kcLckTasks DW 00000h, 00000h

kcTmrTask DW 00801h

kcPinTasks DW 00000h, 00000h

kcHotKeys DB 03Bh, 000h, 000h, 000h, 010h, 01Dh, 038h

4.2 MultiKey/42i Feature Support

MultiKey/42i is an 8042 product using only 2KBytes of ROM and 256Bytes of RAM. To
accommodate these limitations, some of the features found in other MultiKey/42 products had to
be removed. Due to the small amount of RAM, and the desire to provide a second Inactivity
Timer Task, the second task is shared with HotKey5. If this feature is enabled, the HotKey5
Task will be invoked when the Inactivity Timer expires. Many designs require Quicklock
(HotKey invoked Password Security) and also require Security to be invoked when the Inactivity
Timer expires, thisis the best shared HotKey 5 Task and Inactivity Task example. If all 5
HotKeys are required and nothing can be shared with the Inactivity Timer, then the Inactivity
Timer must be limited to one task. If two Inactivity Timer Tasks are required, then only the first
4 HotKeys can be used and the fifth Scan Code value must be zero.

Another trade-off is the SMI function number generation. Most designs do not worry about
generating SMI’s for each task; but if they do, careful consideration must be given to the SMI
function numbers. If any particular task invokes another task the SMI function number will be a
result of the second task. If HotKey 5 Task is set to Enable Security, the HotKey 5 SMI value
will be overwritten by the second Security Enabled SMI value (if Password Two is |oaded),
which will be overwritten by the first Security Enabled SMI value (if Password One is |oaded);
therefore the SMI value read after the HotKey 5 isinvoked would most likely be the result of the
first Security Enabled Task. Like Password Security, the second Inactivity Task is actually
performed before the first Inactivity Task is performed. The SMI caused by the Inactivity Timer
expiring would read an SM1 function number value based on the first Inactivity Timer Standby
Task. If both external Pin Event Tasks were enabled and set to the same pin(s), the first externa
Pin Event Task is performed before the second external Pin Event Task. One of the more
complicated arrangements of SMI function numbers overwriting each other is shown in Table 4-
1

40

MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

Table 4-1. SMI Function Number Values.

Function Task SMI
Input Pin 1 (monitoring P1.3) Pulse Low Port 1 Pin 4 001h
Input Pin 2 (monitoring P1.3) Force Standby Mode 003h
Inactivity Timer 1 Enable Security 005h
Inactivity Timer 2 Lower Port 1 Pin 5 007h
Password Security 1 Lower Port 1 Pin 6 00%h
Password Security 2 Lower Port 1 Pin 7 00Bh

The Input Pin 1 Task would set the SMI value to 001h, which would be overwritten by Input Pin
2 Task so the SMI value would be 003h, since both functions are monitoring the same pin.
However, since the Input Pin 2 Task causes the Inactivity Timer to immediately expire (Force
Standby Mode), the second Inactivity Timer Task overwrites the SMI value to 007h which in
turn is overwritten to 005h by the first Inactivity Timer Task. And since the Inactivity Timer
Task invokes Security, the second Security Task will overwrite the SMI value to 00Bh which is
finally overwritten by the first Security Task to 009h. So the Pulse Low of Port 1 Pin 4 which
caused the SMI1 would generate a value of 009h. The functional equivalent shown in Table 4-2 is

much more clear with the Tasks rearranged.

Table 4-2. SMI Function Number Values (tasks rearranged).

Function Task SMI
Input Pin 1 (monitoring P1.3) Force Standby Mode 001h
Input Pin 2 (monitoring P1.3) Pulse Low Port 1 Pin 4 003h
Inactivity Timer 1 Lower Port 1 Pin 5 005h
Inactivity Timer 2 Enable Security 007h
Password Security 1 Lower Port 1 Pin 6 00%h
Password Security 2 Lower Port 1 Pin 7 00Bh

The same Pulse Low of Port 1 Pin 4 which caused the SMI would generate a value of 003h and
the other SMI overwrites are secondary. In addition, the Inactivity Timer Tasks will generate a
SMI value directly from the first Inactivity Timer Task and the Password Security Task SMI
values will not confuse the issue.

Along with picking the correct Function and Task pairings, careful consideration must be given
to values of SMIs chosen. Note that some functions have two separate Tasks, an Enable and a
Disable Task, or Standby and a Resume Task. These functions' SMI values are automatically
produced from the first Task by incrementing the SMI value. One way to avoid overlapping
numbersis to assign odd numbers to all Tasks requiring an SM1 see Table 4-1 and Table 4-2.

MultiKey/42i Developer's Technical Reference 41

Chapter 4 - MultiKey/42i Configuration Utility

4.2.1 Configuring HotKeys and Tasks

Once the HotKey & Task window is active (i.e. the window is highlighted and
cursor is enabled), select the HotKey or the Activate key to be modified with
the ARROW keys and press the ENTER key. The Activate keys are the keys
held down in addition to the HotKey. The default values for the activate keys
are left CTRL key and left ALT key. Once selected a dialog will prompt the
user to select any key on the external Desktop Keyboard that is not an
extended key. The extended keys are the separate arrows and the separate
cursor control keys, basically any key added between the original IBM AT 84-
Key Keyboard and the 101-Key Keyboard. Extended keys produce more than
one Scan Code per Make/Break and cannot be used as a HotKey. The HotK ey
Scan Code dialog uses the right CTRL key to clear the HotKey entry and the
right ALT key to abort the process. These keys are used since they are
extended keys and cannot be used as the HotK ey.

To configure the Task select the Task to be modified with the ARROW keys
and pressthe ENTER key. A dialog will prompt the user to select the type of
Task to be performed, as shown in Figure 4-7.

Figure 4-7. CFG42i.EXE HotKey Task Dialog.
°¢C)Copyr IRt PABEATR °TECAAGTO9TES°1996° "MATRTREY742T °CORTTgaPAtTOA°CVEr°122)°°°
UAAAAAAAAAAAAQ

Key A¢
3 Active Key © Ctrl 3
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA sMI Ac

3 Hotkey 1© F1 3 Gaa 3 Q0h

3 HotKey 2 © (uu 3 aaa 3 00h =

3 HotKey 3 © (ug 3 Gaa 3 (Q0h 3

3 HotKey 4 © (uu 3 aaa 3 00h =

3 Hotkey 5° Q 3 Enable Security 3 03h 3

AAAAARAAAAAAAD U

UAAAAAAAAAAAAOA Port Mask AAAAA External P|n Task AAAAA SMI A¢
3 00h 3

3

UAAAAAAAAAAAAOA Timer °oARARA Ro° Indicator AAAAAAAAAA;
3 Inactivity © uu°9°b°etéa?°Ta§R°°°°°°°°°°°°°°°°°°°9°e Scroll Lock LED 3
AARAAAAAAAAAAXA Standb°©°pePBREPPEPECI°PRASS oo oo o ek AARAAAAAAA SMI # A~
3 Inactive 1 © Lower P°©°B°RaTSE°PErE°2°piAccco°°°°°°°°°0° 00001000b 3 02h 3
3 Inactive 2 © Enable °©°B°POtSE°EOR°POPE°2°PpTACCCC°°°°°°rity 3 04h s
AAAAAAAAAAAAADAAAAAAAAS©°R°PaTSB°RTGR°PEPEC2oPTA S22 0 AAAAAAAAAAAAAAAAAAAAAD
UAAAAAAAAAAAAOA Normal°® p Force Standby Mode ©°2 AAA Security Mode A;
3 Password © OUUOU°9°b°Sét°Pa§§W6?d°SéeﬂP?t9°°°°°°°°9° 3 Block Commands 3
XA Enable°9°p° é°9°skAAAAAAAAAAA SMI # A”
3 Security 1 © 3 0ih 3
3 Security 2 © BSE2RBOPES°°BAtEP238tEcts a 3 01 3
AAAAAAAAAAAAAXA Key AASETTTITITITTITITRITITITITRIITICITIIN. Value A”
3 Ignore Key © (uu 3 D2h:Pswd test 3 Disabled 3 Send when Enabled 3 (ua 3
3 Ignore Key © G043 when P1.2=1 AAAAAAAAAAAU Send when Disabled 3 Gaa 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Miscellaneous AAAc
3 Port Usage © Ports are not Swapped (Keyboard on Port0O, Mouse on Portl)
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate
3 Conversion © Use ROM ScanCode Conversion Table 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

Once the Task has been specified and the Task chosen requires Port Pinsto be
defined, the program prompts the user for the Port Pin number(s) with the Port
Pin Dialog Box shown in Figure 4-8.

42 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-8. CFG42i.EXE Port Pin(s) Dialog.
(C)Cﬁp???gﬁt°Pﬁ6éﬁ?R°Yé6ﬁﬁ6|6@?é§ 1998°°MattIRE97221 °COATTgaration°gverccayecee
UAAAAAAAAAAAAQA Key Ac
3 Active Key © Ctrl
3 Active Key © Alt AA HotKey Task AARAAAAARAA SMI A¢

&
3 Hotkey 1° F1 3 Force Standby Mode 3 00h 3
3 HotKey 2 © (uu aaa 3 00h =
3 Hotkey 3 ° (uu 3 aaa 3 00h =
3 HotKey 4 © (uu 3 aaa 3 00h =
3 Hotkey 5 ©° Q 3 Enable Security 3 03h 3

AAAAAAAAAAAAADAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAY

UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA sMI Ag

3 InputPin 1 © aag 3 aaa 3 00h 3
GPETTRRTRRTTTTTITRLLLRIIIRRRRRRORISOn 3
AAAAAAAAAAAAADAAAAAAA°9°°Séléet°P?ﬁ°6? P?ﬁ°€6mb?ﬁat?6ﬁ°?9°AAAU

UAAAAAAAAAAAAOA TimercooRARRRAR RRRe° Indicator AAAAAAAAAA,
3 Inactivity © u°9°°°°°[°]°PI 7°RRBYPBERC o2 °0°a Scroll Lock LED 3
AAAAAAAAAAAAAXA Stand°@°°°°°F°] P28 REPREEROC oo o 0ok ARARAAAAAAA SMI # A~
3 Inactive 1 © Lower °°°°°°°f°J°P2°8°fManaracearacc°°°°°e> 00001000b = 02h 3
3 Inactive 2 © Enable®®°°°° [] P1.4 Unused eeecoo o ity 3 04h 3
AAAAAAAAAAAAADAAAAAAA @O0 FogopeogoBRAgafc oo oo o e ARANAAAAAAAAAAAAAAAAAD
UAAAAAAAAAAAAOA NormaceeoeoefeoP2o2°0AA8aaC °c°c°o°°0°) AAA Security Mode A;
3 Password © uuuu°9°°°°°[°]°PI ?°rMBaSe°patgcccccceecee 3 Block Commands 3
RAAAAAAARAAAAXA Enablee° coccoog ANMMAAAAAAAA SMI # A~
3 Security 1 °© oo RReo 3 0ih 3
3 Security 2 © °o°gpace=vgqgt1esceAter2configareseeea 3 0lh 3
AAAAAAAAAAAAAXA Key Reetttitttttrrteteteeeeereeeereeeene Value A”
3 Ignore Key © aau 3 D2h:Pswd test 3 Disabled 3 Send when Enabled 3 uud 3
3 Ignore Key © G043 when P1.2=1 AAAAAAAAAAAU Send when Disabled 3 (Gaa 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Miscellaneous AARAA,
3 Port Usage © Ports are not Swapped (Keyboard on PortO, Mouse on Portl) 3
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate 3
3 Conversion © Use ROM ScanCode Conversion Table 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

4.2.2 Configuring Input Pin Events and Tasks

When the External Input Pin Event & Task window is active (i.e. the window
is highlighted and cursor is enabled), select between Input Pin 1 & 2 Port Mask
with the ARROW keys and press the ENTER key to enable and modify Input
Pin monitoring. Once the Port Mask has been selected the Port Pin Dialog Box
of Figure 4-8 prompts the user to define the Pins used to monitor activity. The
Pin Mask can be set to watch one or more Portl Pins. If it isdesired to perform
two Tasks on one external Input Event, both Port Masks can be set to the same
value.

Once the Keyboard Controller detects activity on a selected pin, it performs the
corresponding Task. The Input Pin Event Task can be modified by selecting
the Task which requires changing, with the ARROW keys and pressing the
ENTER key. The program will prompt the user to select a Task from the Input
Pin Event Task Dialog Box as shown from Figure 4-9. The list of Tasks
available for Input Pin Eventsis very similar to the HotKey Task list shownin
Figure 4-7,with afew additions (Restore Active State & Disable Security).

Once the Task has be specified and the Task chosen requires Port Pins to be
defined, the program prompts the user for the Port Pin number(s) with the Port
Pin Dialog Box shown in Figure 4-8.

MultiKey/42i Developer's Technical Reference 43

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-9. CFG42i.EXE Input Pin Event Task Dialog.
°(C)CGp?P?Qﬁt°PH6@ﬁ?R°Té€ﬁﬁ6|6@?é§ 1998°°MattIREy7221 °CoOATTgaration°gverccayece
UAAAAAAAAAAAAQA Key Ac
3 Active Key © Ctrl
3 Active Key © Alt AR HotKey Task AAAAAAAAAAA SMI Ac

3 Hotkey 1 ° (uu 3 aaa 3 00h

3 HotKey 2 © (uu 3 aaa 3 00h =
3 Hotkey 3 © (ud 3 Gaa 3 (Q0h 3
3 HotKey 4 © (uu 3 aaa 3 00h =
3 HQtKQy 50 3 Enable Securlty 3 03h 3

3 InputPin 1 © 00Ol10°EttttttttrreeeeeeeeeeReeeeeeseeesesch =
3 InputPin 2 © ((°°°°°S81ect°ERtEPAATTAPALSTASRS°2O°h 3
AAAAAAAAAAAAADAAAAAAAA R oo ARAU _—
UAAAAAAAAAAAAQA Timer °©°pB°CtaapctasReccccccccceecccccccee Indjcator AAAAAAAAAA;
3 Inactivity © auce°peeorercPert°eepiAccceccccccccc0e Scroll Lock LED 3
AAAAAAAAAAAAAXA Standb°©°p°RATEE°POPECI°pRASS oo oo ceck AARAAAAAAA SMI # A~
3 Inactive 1 © Lower P°°°B°PatS&°E8R°PBPET°pIACCC°°°°°©° 00001000b 3 02h 3
3 Inactive 2 © Enable °0°p°PATSE°RIGN°POPL 1 PEAZ22°0°°°0ority ER
AAAAAAAAAAAAADAAAAAAAA®® b Force Standby Mode oo AAARAAAAAAAAAAAAAAAAAD
UAAAAAAAAAAAAOA Normal °©°peRestopacActive statacccco°o°0°p AA Security Mode A;
3 Password © Gdduucecpesgtcopassfordcsecaritgeccccccccee 3 Block Commands 3
AAAAAAAARAAAAXA Enablec®°pecteare P3§§W6P6°SéeﬂP?t9°°°°°°9°SkAAAAAAAAAAA SMI # A
3 Security 1 © 2o To0g1E RARY °yaptece°(2 0lh =
S Security 2° ° ARARRRO U s 0ih 3
AAAAAAAAAAAAAXA Key AA°©°°°°REB2RRBPES°°EALEP2SETEEEE>" value A”
3 Ignore Key © aau S°Btftttrrreeeeeeeet frertrtrtttncis Enabled 3 o0 3
3 Ignore Key © gud 3 when PL.2=1 U Send when Disabled 3 GGd 3
AAAAAAAAAAAAADAAAAAAAAAAAAAAAAA AAU
UAAAAAAAAAAAAOA Miscellaneous AAA

3 Port Usage © Ports are not Swapped (Keyboard on Port0O, Mouse on Portl) 3
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate 3
3 Conversion © Use ROM ScanCode Conversion Table 3

AAA

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

4.2.3 Configuring Inactivity Timer and Tasks

When the Inactivity Timer Configuration window is active (i.e. the window is
highlighted and cursor is enabled), the user can choose to modify the Inactivity
Time; Enable or Disable the Flashing Scroll Lock LED as an Inactivity
Indicator; and set the Standby Tasks and the Standby SMI values. The Resume
Tasks and Resume SMI values are automatically generated from the Standby
values.

If the Inactivity Time is selected with the ENTER key, the program prompts
the user for a Time value as shown in the Inactivity Time Dialog Box in Figure
4-10. Setting the Inactivity Time has been included in the MultiKey/42i
Configuration Utility for completeness since the BIOS would probably set this
value from user defined values stored in CMOS. This allows testing of the
Keyboard Controller and the Inactivity Timer without any BIOS modifications.

Asindicated in Section 4.2, the Inactivity Task was extended by sharing the
HotKey 5 Task, the Second Task item enables/disables this feature. If selected
the user is prompted by a simple Dialog Box whether to enable or disable this
feature.

44 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-10. CFG42i.EXE Inactivity Time Dialog.
°(C)CGp???gﬁt°Pﬁ6@ﬁ?R°Té€ﬁﬁ6|6@?é§ 1998°°MattIREy7221°CoATTgaration°gverccayece
UAAAAAAAAAAAAOQA Key Ac
3 Active Key © Ctrl o .
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA SMI A;

3 Hotkey 1° F1 3 Force Standby Mode 3 00h 3
3 HotKey 2 © (uu aaa 3 00h =
3 Hotkey 3 ° (uu 3 aaa 3 00h =
3 HotKey 4 © ug 3 Gaa 3 (Q0h 3
3 Hotkey 5 © Q 2 Enable Security 2 03h 32
AAAAAAAAAAAAADAAAAARAAAAAAAARARAAAAAAAAAARAAAAARARRARL
UAAAAAAAAAAAAOA Port Mask°BFTTTETTTTETRTeteeeteteeiescA sul A,
3 InputPin 1 © 00010000°° Aae tg°TiMgccee 05h 3

3 InputPin 2 © Qau_ °° Re° 00h 3

AAAAAAAAAAAAADAAAAAAAAAAAOoC oo oo RopR8gRta[° o0 0° AAAAAAAU

UAAAAAAAAAAAAOA Timer Val°©°°°°°°B°39°88EBAAS°°°°°°°°vity Indicator AAAAARAARA,;
3 Inactivity © aaa °eeeeeccpectentAateccccc°°°e°g the Scroll Lock LED 3
AAAAAAAAAAAAAXA Standby Te®°°°c°cBeo2°miAAtEsec°c°°°0° Task AAAAAAAAAAA SMI # A~
3 Inactive 1 © Lower Port°®°°°°°°f°°8°niAAtES°°°°°°°®°ortl 00001000b 3 02h 3
3 Inactive 2 © Enable Sec°®°°°°°°f°20°MTAARES °°°°°°O°Security 3 04h s
AAAAAAAAAAAAADAAAAAAAAAAA SO oo o Bo 90 Rt ARERS® > °°°° 0 AAAAAAAAAAAAAAAAAAAAAAAAAD
UAAAAAAAAAAAAOA Normal/Pac©°°°°° h 30 minutes °°°°°°®°ord 2 AAA Security Mode A;
3 Password © 00000GGG°®°°°°°°B40°MTAARES®°°°°°°O°((3 Block Commands 3
AAAAAAAAAAARAXA Enable Taeeeeeoo°foBh MEAALES 22220 TaskAAAAAAAAAAA sMI # A~
3 SeCUrlty l o ogoooooopooi haa?oooooooooogo uuu 3 Olh 3
3 Security 2 © (°@°°°°°°fe 3R RHAPEe°°°°°°°@° [y 3 Q0lh 3
AAAAAAAAAAAAAXA Key AAAAReecococogecgoR ????9° Value A~
3 Ignore Key © (dau 3 D2°°AA Re°y when Enabled 3 Guu 3
3 Ignore Key © 000 3 wh°©°BSE2AROrt°°BATEP2SE18EE°°° when Disabled 3 aua 3
AAAAAAAAAAAAADAAAAAAAAAAACBEE TR ETRTRTRTR TR T T 1T T AAAAAAAAAAAAAAAAAAAAAAAAALD
UAAAAAAAAAAAAOA Miscellaneous AAA,

3 Port Usage © Ports are not Swapped (Keyboard on PortO, Mouse on Portl) 3
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate 3
3 Conversion © Use ROM ScanCode Conversion Table 3

AAA

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

The Inactivity Indicator item is also an enable/disable feature. If selected, the
user is prompted to enable/disable the Scroll Lock LED as a flashing Inactivity
mode (Standby mode) indicator.

There are a maximum of two Standby Tasks to be performed. The second Task
if defined is always performed before the first Task, thisinformation is
important when calculating unique SMI function numbers for all events. The
Resume Tasks are automatically generated from the Standby Task. If the Task
isaPulsed function, the Task is exactly repeated for the Resume Task,
otherwise the function is inverted for the Resume Task. If Port 1 Pin 3 was
lowered by the Standby Task, it would be raised by the Resume Task. The
Resume SMI number values are simply incremented from the Standby SMI
numbers. Therefore the maximum Standby SMI number value is OOEh, making
the maximum Resume SMI number value equal to 00Fh.

The Standby Tasks are modified just as the HotK ey Tasks with one addition; if
the second Inactivity Timer Task is being modified, a Dialog Box reminding
the user that this Task is connected with the HotKey 5 Task is displayed. If
there is no second Standby Task, the Dialog Box will remind the user that this
Task can only be used if the Second Task is set to Share HotKey5. If the
HotKey 5 Task is being shared, the a Dialog Box will remind the user that
modifying this Task will also modify the HotKey 5 Task as shown in Figure 4-
11

MultiKey/42i Developer's Technical Reference 45

Chapter 4 - MultiKey/42i Configuration Utility

Figure 4-11. CFG42i.EXE 2nd Standby Task Dialog.
(C)CGp?P?Qﬁt°Pﬁ6@ﬁ?R°Té€ﬁﬁ6|6@?é§ 1998°°MattIREy7221 °COATTgaration°gverccayecee
UAAAAAAAAAAAAOQA Key Ac
3 Active Key © Ctrl
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA SMI Ay

&
3 Hotkey 1° F1 3 Force Standby Mode 3 00h 3
3 HotKey 2 © (uu aaa 3 00h =
3 Hotkey 3 ° (uu 3 aaa 3 00h =
3 HotKey 4 © (uu 3 aaa 3 00h =
3 Hotkey 5 ° Q 23 Enable Security 3 03h 3

AAAAAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY

UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA SMI Ag

3 InputPln 1 © 00010000b 3 Force Standby Mode 3 05h 3
2.° 3 3 00h 3

3 Inactivity © 30.0 m|ngggg//?/ghqtg/HQEKQy@/?/E[@gh!qg the Scroll Lock LED 3
AAAAAAAAAAAAAXA StandBTTTTTETETRefefeteteeeeeeaesesararsck AAAAAAAAAAA SMI # A~
3 Inactive 1 © Lower °©°FBtRE9S°TaSR°1S°4186°CoATTIHArad°e° 00001000b 3 02h 3
3 Inactive 2 © EnabIe°9°a§°thé°§éeaﬁd°1ﬁaet?9?t9°Ya§R°°°9°r|ty 3 04h 3
AAAAAAAARAAAADAARAAAA® °°
UAAAAAAAAAAAAOA Norma©of RRe°2 AAA Security Mode A;
3 Password © Gduuce°°°°BSEABOPtecBAter=CoAtiAG&°°°°°° 3 Block Commands 3
AAAAAAAAAAAAAXA EnablBETTTTTteteefefeteteteeeeeeaeeatetncoskAAAAAAAAAAA SMI # A~
3 Security 1 © aaa 3 00h = aaa 3 01h =3
3 Security 2 © ooooa oo 03 000 3 ooa o3 0lh 3
AAAAAAAAAAAAAXA Key
3 Ignore Key © aau 3 D2h:Pswd test 3 Disabled 3 Send when Enabled 3 uud 3
3 Ignore Key © G040 3 when P1.2=1 AAAAAAAAAAAU Send when Disabled 3 (Gaa 3
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Miscellaneous AARAA,
3 Port Usage © Ports are not Swapped (Keyboard on Port0O, Mouse on Portl) 3
3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate 3
3 Conversion © Use ROM ScanCode Conversion Table 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

Press the ENTER key to Continue defining the Task using the same procedures
used to set the HotK ey and External Input Pin Event Tasks (Sections 4.2.1'and
4.2.2).

4.2.4 Configuring Password Security and
Tasks

Once the Password Configuration window is active (i.e. the window is
highlighted and cursor is enabled), the user can choose to modify with the
ARROW keys either of the Passwords, the Security Mode, the Security
Enabled Tasks, the Security Enabled SMI values, the keysto not process as
Password matches, the USB Password Validation mode, and the values to send
to the System when Security is enabled & disabled. The Security Disabled
Tasks and Security Disabled SMI values are automatically generated from the
Security Enabled values.

Both 16-byte Passwords can be set from the MultiKey/42i Configuration
Utility. Thisis an aternate method to having the BIOS set one or more user
defined values that were stored in CMOS. It allows the testing of the Keyboard
Controller and both Passwords without any BIOS modifications. Either
Password can only be downloaded once and neither Password can ever be
overwritten. After installation, either Password can disable Security. Passwords
can employ separate Enable/Disable Tasks. These tasks can configure a

46 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

‘customized system' accessing separate hardware and software components.
Each Password has a separate Enable/Disable SMI function number which can
be read (as soon as the Security is enabled) to determine which Password was
entered through software, without causing an SMI. kbdWait4Security is an
example of that type of routine; it waits for either Password and then reads the
MultiKey/42i Keyboard Controller SMI value to determine which Password
was entered.

The Security Mode item is an Enable/Disable feature. If selected the user is
prompted by a simple Dialog Box whether to enable or disable the Blocking of
Device Commands when the Security feature is enabled.

The Security Enabled Tasks are modified just as the HotK ey, External Input
Pin Event, and Inactivity Tasks. Defining the Task will follow the same
procedure as setting the HotK ey or External Input Pin Event Task (Sections
4.2.1'and 4.2.2). If both Passwords are installed, then both Security Enabled
Tasks are performed when Security is enabled. The second Task, if defined, is
always performed before the first Task; this information isimportant when
calculating unique SMI function numbers for al events. The Security Disabled
Tasks are automatically generated from the Security Enabled Task. If the Task
isaPulsed function, the Task is exactly repeated for the Security Disabled
Task; otherwise the function isinverted for the Security Disabled Task. If Port
1 Pin 2 was lowered by the Security Enabled Task, it would be raised by the
Security Disabled Task. The Security Disabled SMI number values are simply
incremented from the Security Enabled SMI numbers. Therefore the maximum
Security Enabled SMI number value is 00Eh, making the maximum Security
Disabled SMI number value equal to O0Fh.

The USB Password Validation (D2h: Pswd test when P1.2 isHigh) itemisan
enable/disable feature. If selected the user is prompted by a simple Dialog Box
whether to enable or disable the USB Password Validation support feature.

Setting the Ignore Key values and the data to be sent to the System on
Enable/Disable have been included here since they affect the overall Security
operation. These features are original IBM defined features. The Ignore Key
values are normally set to left SHIFT key and right SHIFT key to remove all
case-sengitivity with the Password. The Ignore Key values are modified
exactly like setting the HotKey Scan Codes in Section 4.2.1.

The last remaining Security feature is the data sent to the System when
Security is enabled and disabled. The idea behind this feature is to setup
unigue numbers that cannot be confused with the Keyboard Scan Codes so the
System receives an indication when Security has been enabled and disabled,
however this feature is rarely used since there are other ways of getting this
information. Once the cursor has been moved to this feature, the numeric value
can be typed-in pressing the ENTER key when completed or pressing the
ENTER key first will pop-up a Dialog Box prompting the user for a numeric
value. The value of zero disables the feature.

MultiKey/42i Developer's Technical Reference a7

Chapter 4 - MultiKey/42i Configuration Utility

4.2.5 Configuring Miscellaneous Features

Once the Miscellaneous Configuration window is active (i.e. the window is
highlighted and cursor is enabled), the user can choose to modify with the
ARROW keys the Port Usage, the Clock Rate (which should be set at 12MH2z),
and whether the Scan Code Conversion table is taken from ROM or RAM.

Figure 4-12. CFG42i.EXE Port Usage Dialog.
°geycopyrignteoPRoGATR°TEEAAOTBYTES 29962 Rt tTREy 7221 °COATRgaratToA°varc12ay
UAAAAAAAAAAAAQA Key A¢

3

3 Active Key © Ctrl
3 Active Key © Alt AA HotKey Task AAAAAAAAAAA sMI A;

&
3 Hotkey 1° F1 3 Force Standby Mode 3 00h 3
3 HotKey 2 © (uu aaa 3 00h =
3 Hotkey 3 ° (uu 3 aaa 3 00h 3
3 Hotkey 4 © (ug 3 Gaa 3 (Q0h 3
3 Hotkey 5 © Q2 Enable Security 2 03h 32
AAAAAAAAAAAAAD U

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
UAAAAAAAAAAAAOA Port Mask AAAAA External Pin Task AAAAA SMI A
2 InputPin 1 © 00010000b 3 Force Standby Mode 3 05h 3
3 InputPin 2 © aau 3 aau 3 00h 3
AAAAAAAAAAAAADAAAY

¢
i 3
ARAAAARAAARAAXA Stand°e°°°°Seteetepegiee° PO?t°U§agé°°°??9°k AAAAARAAAAA smI # A
3 Inactive 1 © Lower °©ARA RRR®° 00001000b 3 02h 3
3 Inactive 2 © Enable®® p Ports not Swapped (PortO=Kbd) °°rity 3 04h s
AAAAAAAAAAAAADAAAAAAA OB POPLS 2RBgY°°°° 0> AMAAAAAAAAAAAAAAAAAAAU

UAAAAAAAAAAAAOA Norma®©RA? ARfeo2 AAA Security Mode A;
5 Passuord © (107" BSEADOT LS ENTEr=Seters-o--o> 3 Block Comnands 5
AAAAAAAAAAAAAXA Enabl BETTTTEteteefefeteteteeeeseaetaetnoskAAAMAAAAAAAA SMI # A~
3 Security 1 © Lower Portl 00000100b 3 06h 2 Raise Portl 00000100b 3 07h 3
3 Security 2 © oooog oo 03 000 3 ooa o3 0lh 3
AAAAAAAAAAAAAXA Key AA
3 Ignore Key © (uu
3 Ignore Key © aaa 3 when P1. S (uu
AAAAAAAAAAAAADAAAD
UAAAAAAAAAAAAOA Miscellaneous AAAc
3 Port Usage © Ports are not Swapped (Keyboard on Port0O, Mouse on Portl)

3 Clock Rate © Timer variables are based on a 12.0 MHz clock rate

3 Conversion © Use ROM ScanCode Conversion Table 3
AAAAAAAAAAAAADAAAD

Controller identified as: MultiKey/42i for the 8042 (v4.12)

AA
100Hé'p000 zoo'ﬁfaooo 30066'6?00 aDDDDDDDDD sooﬁaadooo Soosaeéooo EgeDER?tDD

The Clock Rate has been included in the MultiKey/42i Configuration Utility
for completeness and should always be set at 12MHz. One of the MultiKey/42i
compromises which comes along with the additional featuresin a 2K package
isthat the Keyboard Controller’s Clock Rate must be 12MHz.

Both selecting Port Usage (PortSwapping) and selecting ROM/RAM Scan
Code Conversion Table present a simple Dialog Box to the user when selected,
as shown in Figure 4-12.

48 MultiKey/42i Developer's Technical Reference

Chapter 4 - MultiKey/42i Configuration Utility

4.2.6 Exiting Configuration Utility

The user can exit the Configuration Utility by pressing the ESC key. If changes
have been made and not saved, the Configuration Utility will prompt the user
with a Dialog Box suggesting the current configuration needs to be saved. If
the Configuration Utility is not running in Fake Hardware mode (Command
Line switch: /F), the user is prompted with a Dialog Box asking if the current
configuration is to be downloaded to the MultiKey/42i Keyboard Controller.
The Passwords will also be downloaded, which means after this the
MultiKey/42i configuration will not able to be changed until the System is
powered down. If either Password has been downloaded before the
Configuration Utility was run, the user will be given an Error Dialog Box
indicating the MultiKey/42i configuration cannot be updated.

MultiKey/42i Developer's Technical Reference 49

Chapter 4 - MultiKey/42i Configuration Utility

This page left blank.

50 MultiKey/42i Developer's Technical Reference

Chapter 5
MultiKey Keyboard Controller Routines

Many MultiKey features are RAM loaded variables that can be changed or selected external to
the Keyboard Controller. This Chapter is devoted to Code that talks to the Keyboard Controller,
the Keyboard, and the PS/2 Mouse. This Code can be used in the System BIOS or in the Power
Management routines.

5.1

Routines Overview

The following is alist of the types of Keyboard Controller routines contained in this Chapter.
MultiKey Control Routines, Disabling/Enabling the Keyboard & Mouse Interface routines.
MultiKey Support Routines, Keyboard Controller Interface routines.

MultiKey/42i BIOS Routines, Keyboard Controller Configuration routines.
MultiKey/42i Setup Routines, End-User Configuration routines.
Keyboard/Mouse POST Routines, Reset/Init Keyboard Controller, Keyboard and the Mouse.

5.1.1 MultiKey Control Routines

The MultiKey Control routines provide clean access to the MultiKey
Controller through foreground and background (i.e. SMI) environments. The
type of Keyboard Controller and its configuration can also be determined from
these routines. Table 5-1 lists the MultiKey Control Routines.

Table 5-1. MultiKey Control Routines.

Name Description

kbdDevicesOff Used in SMI code where no background Interrupt Service Routines are allowed to service the Mouse and
Keyboard devices. This routine saves the Keyboard Controller’s current state and disables the Keyboard and
Mouse device interfaces without disturbing incoming Keyboard and Mouse data.

kbdDevicesOn Used in SMI code where no background Interrupt Service Routines are allowed to service the Mouse and
Keyboard devices. Thisroutine restores the original Keyboard Controller’s state and clears any spurious
interrupts.

kbdDisDevices Used in the foreground code where background Interrupt Service Routines handle the Mouse and Keyboard
devices. This routine saves the Keyboard Controller’s current state and disables the Keyboard and Mouse
device interfaces without disturbing incoming Keyboard and Mouse data.

kbdEnaDevices Used in the foreground code where background Interrupt Service Routines handle the Mouse and Keyboard
devices. This routine restores the original Keyboard Controller’s state and clears any spurious interrupts.

kbdChkProcessor Determines the Type of Keyboard Controller present in the System along with the revision level of the

processor and its current configuration.

MultiKey/42i Developer's Technical Reference 51

Chapter 5 - MultiKey Keyboard Controller Routines

5.1.2 MultiKey Support Routines

The MultiKey Support routines provide interface routine for MultiKey
Keyboard Controller Variables and Memory along with the basic interface
routines. Additional support includes System delay routines. Table 5-2 lists the
MultiKey Support Routines.

Table 5-2. MultiKey Support Routines.

Name Description
kbdwWait4|BE Waits for the Keyboard Controller’s Input Buffer to be Empty.
kbdWait4OBF Waits for the Keyboard Controller’s Output Buffer to be Full and returns the Keyboard Controller’s Data.
kbdStatusOBF Waits for the Keyboard Controller’s Output Buffer to be Full and returns the current Keyboard Controller’s
Status along with the Keyboard Controller’s Data.
kbdWait4Quiet Waits for the Keyboard Controller to be 'not busy'.
kbdDelay15us Timed delay of 15 micro-seconds based on the Refresh Timer.
kbdDelaylms Timed delay of CX number milli-seconds based on the Refresh Timer.
kbdDelaylmsOBF Waits up to CX number of milli-seconds for the Keyboard Controller’s Output Buffer to be Full and returns
the Keyboard Controller's Data or Timeout Error.
kbdGetVariable Reads MultiKey Keyhoard Controller Variable through the extended MultiKey Command interface.
kbdSetVariable Write MultiKey Keyboard Controller Variable through the extended MultiKey Command interface.
kbdGetProcRAM Reads MultiKey Keyboard Controller Memory through the extended MultiKey Command interface
kbdSetProcRAM Writes MultiKey Keyboard Controller Memory through the extended MultiKey Command interface.
5.1.3 MultiKey/42i BIOS Routines
The MultiKey/42i BIOS routines provide complete feature configuration for
the MultiKey/42i product. These features include the Inactivity Timer,
HotKeys, Input Pin Events, Security, and Miscellaneous Keyboard Controller
functions. Table 5-3 lists the MultiKey/42i BIOS routines.
Table 5-3. MultiKey/42i BIOS Routines.
Name Description

kbdCfgController

Configures all of the MultiKey/42i features from atable created from the MultiKey/42i Configuration Utility
(CFG42i.EXE).

kbdPortSwapping

Configures which port has a Mouse attached and which port has a Keyboard attached.

kbdCalibrateTmrs

Calibrates the MultiKey/42i internal clock variablesto allow the Inactivity Timer to be accurate.

52

MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

5.1.4 MultiKey/42i Setup Routines

The MultiKey/42i Setup routines provide the End-User support routines for
some of the MultiKey/42i run-time features. Table 5-4 lists the MultiKey/42i
Setup Routines.

Table 5-4. MultiKey/42i Setup Routines.

Name

Description

kbdWait4Security

Waits for the User/Supervisor to enter a Password which will disable Security and then inquires of
MultiKey/42i which Password was entered.

kbdSetInactiveTmr

Updates and starts the Inactivity Timer. The value of zero disablesthe Inactivity Timer.

kbdGetl nactiveTmr

Reads the current Inactivity Timer value. The value of zero indicates the Inactivity Timer is disabled.

kbdL oadPassword L oads specified (User/Supervisor) Password from atable.
5.1.5 Keyboard/Mouse POST Routines
The Keyboard/Mouse POST routines are used to initialize the external Devices
from power-on. These routines can be used in POST (Power-On Self Test) or
Resume to test and initialize the Devices before programming them to the
desired state. Table 5-5 lists the MultiKey Keyboard/Mouse POST routines.

Table 5-5. MultiKey Keyboard and Mouse POST Routines.
Name Description
kbdStopDevices Disables the Keyboard from scanning the Matrix of keys and disables the Mouse from creating Mouse
packets.

kbdFlushDevices Checks and flushes Data from the Keyboard Controller and Devices.

kbdRstController Resets the Keyboard Controller using the “ Self Test” Command.

kbdRstK eyboard Resets the Keyboard and |eave the device disabled.

kbdRstPS2M ouse Resets the PS/2 Mouse and | eave the device disabled.

kbdSend2K eyboard Sends Command/Data to the Keyboard Device and waits for an acknowledgment.

kbdSend2Mouse Sends Command/Data to the PS/2 Mouse Device and waits for an acknowledgment.

MultiKey/42i Developer's Technical Reference

53

Chapter 5 - MultiKey Keyboard Controller Routines

5.1.6 Sample Keyboard Controller Code

Figure 5-1 illustrates a sample of the MultiKey code base.

Figure 5-1. Sample Keyboard Controller Code. (sheet 1 of 24)

Copyright (c) 1992-1996 Phoenix Technologies Ltd.
This program contains proprietary and confidential information. All
rights reserved except as may be permitted by prior written consent.

Content: Common Keyboard Controller, Keyboard, & PS/2 Mice support
routines.

Local Equates - Used in this Module

BITF EQU 1000000000000000b
BITE EQU 0100000000000000b
BITD EQU 0010000000000000b
BITC EQU 0001000000000000b
BITB EQU 0000100000000000b
BITA EQU 0000010000000000b
BIT9 EQU 0000001000000000b
BIT8 EQU 0000000100000000b
BIT7 EQU 0000000010000000b
BIT6 EQU 0000000001000000b
BIT5 EQU 0000000000100000b
BIT4 EQU 0000000000010000b
BIT3 EQU 0000000000001000b
BIT2 EQU 0000000000000100b
BIT1 EQU 0000000000000010b
BITO EQU 0000000000000001b

DATA SEGMENT public *DATA*®
ASSUME DS:DATA

; Data Segment Variables - MultiKey Variable Definitions

;{Read 64h} 8042 Status {saveKCCB} KB Controller Command Byte
; B7 - Parity Error B7 - Reserved

; B6 - Timeout (AT=Rcv Timeout) B6 - Cnvt ScanCodes

; B5 - Aux OBF (AT=Xmt Timeout) B5 - Aux Disabled (AT=PC Mode)

; B4 - KeyLock switch inactive B4 - Kbd Disabled

; B3 - Command/Data B3 - Reserved (AT=Override switch)
; B2 - System Flag B2 - System Flag

; B1L - IBF Bl - Aux IntrEnabled

; BO - OBF BO - Kbd IntrEnabled

;{veriInfol} Version Information 1 {verInfo2} Version Information 11
; B7 - Processor Type (bit2) B7 - IRQ12 software Flip/Flop

; B6 - Battery Management Support B6 - IRQ12 software inverted

; B5 - Kbd Scanning support B5 - IRQ1 software Flip/Flop

; B4 - Power Down Support B4 - IRQ1 software inverted

; B3 - Processor Type (bitl) B3 - Clock speed (bit 3)

; B2 - PS/2 Mouse Emulation B2 - Clock speed (bit 2)

; B1 - AT Environment (0=PS/2) B1 - Clock speed (bit 1)

; BO - Processor Type (bitO) BO - Clock speed (bit 0)

; Processor Type: bit2 bitl bit0 {verFlags} Version Flags

; M38802 O 0 0 B7 - AMI Keyboard Controller

; 80C51SL 0 0 1 B6 - Phoenix Keyboard Controller
; 80x86 O 1 0 B5 - MultiKey Keyboard Controller
; H8/3332 0 1 1 B4 - PS/2 Mouse Environment

; vi44L 1 0 0 B3 - PS/2 Mouse Wrap Mode Set

; 8042 1 0 1 B2 - PS/2 Mouse Attached

; Reserved 1 1 0 B1 - Keyboard Attached

; Reserved 1 1 1 BO - Reserved

54 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample

Keyboard Controller Code. (sheet 2 of 24)

verFlags DB 0 ; Processor Version information
verinfol DB 0 ; Phoenix Version Information byte 1
verInfo2 DB 0 ; Phoenix Version Information byte 11
revision DW 0 ; Phoenix PVCS Revision number
memory ldx DB 0 ; Phoenix extended memory index
saveKCCB DB 0 ; Storage for the KCCB
saveData DB 0 ; Storage for the Data (@ Port 60h)
saveStatus DB 0 ; Storage for the Status (Port 64h)
dummyVector DD 0 ; Storage for Kbd Interrupt Vector
DATA ENDS
CODE SEGMENT public "CODE®
ASSUME CS:CODE
: MULTIKEY CONTROL ROUTINES
o+

Mo

Entry:
Exit:
difies:

Note:

Note:

kbdDevicesOff - Saves the current Keyboard Controller Command Byte and

disables the Keyboard and Auxiliary Devices. This routine
to be used in a non-interruptable environment (i.e. SMI

type handler routine).
DS = DATA segment.

None.

saveKCCB, saveData, saveStatus, and the Minor Flags.

Problems covered by kbdDevicesOff & kbdDevicesOn:

1) kbdDevicesOff executed
Data will be saved unti
Devices are turned off

while Kbd/Aux data coming in. The
I the kbdDevicesOn Routine, before
with no gaps between Commands that

would allow other Device input.

2) The Data will be correctly identified as Kbd or Aux Data
even if is an AT Type Keyboard Controller (no PS/2 Mouse
support), since the AuxOBF line in the Status port is
defined as Transmit Error not Receive Error on the AT Type

Keyboard Controller.
3) The Kbd interface is di

sabled and if the AuxDevice exists

it is also disabled. kbdDevicesOn will restore the

original state.

4) In the kbdDevicesOn Routine the Output Buffer is flushed

to fix if port 60h was

read too quickly on Systems that

raise IRQ1 & IRQ12 in software rather than hardware, which

would cause a spurious

interrupt.

Problems not covered by kbdDevicesOff & kbdDevicesOn:

1) The "sticky" PICs probl
reading port 60h with i

em -- "sticky" PICs are System were
nterrupts disabled will still cause

a Keyboard Interrupt (spurious interrupt).

2) These Routines will not work with non-MultiKey Controllers
configured as an AT type Keyboard Controller (all PS/2
Types OK). All MultiKey products will work in both AT &

PS/2 modes.

Processing: Wait for the Controller to finish up working on the Keyboard

Mouse Transmission in progress and save the Data if present,

then disable both Devices”

interfaces. This routine is used

in Higher priority interrupts (i.e. NMI, SMI, & Timer) than

the Keyboard Interrupt.

MultiKey/42i Developer's Technical Reference 55

Chapter 5 - MultiKey Keyboard Controller Routines

offl:

push
mov
call
out
call
in
mov
test
jz
in
mov
mov
call
out
mov
call
out
mov
call
out
mov
call
out
call
call
mov

pop

Figure 5-1. Sample Keyboard Controller Code. (sheet 3 of 24)
kbdDevicesOff PROC NEAR PUBLIC

ax
al, 07Dh

kbdWait41BE

064h, al

kbdWait41BE

al, 064h

BYTE PTR ds:[saveStatus], al
BYTE PTR ds:[saveStatus], BITO
offl

al, 060h

BYTE PTR ds:[saveData], al
al, 020h

kbdWait41BE

064h, al

al, 0ADh

kbdWait41BE

064h, al

al, 0A7h

kbdWait41BE

064h, al

al, OFFh

kbdWait41BE

064h, al

kbdWait41BE

kbdWai t40BF

BYTE PTR ds:[saveKCCB], al
ax

ret
kbdDevicesOff ENDP

Write RAM Location 3Dh

Wait for Input Buffer Empty
Issue Cmd of 2-byte Cmd only
Wait for Input Buffer Empty
Get the Status

; Is Output Buffer Full?

Jmp if no
Get the Controller Data

Read KCCB command
Wait for Input Buffer Empty

Disable Keyboard interface
Wait for Input Buffer Empty

Disable AuxDevice interface
Wait for Input Buffer Empty

Null Command
Wait for Input Buffer Empty

; Make last Command complete
Wait for Input Buffer Empty
Wait for Output Buffer Full
Save so it can be restored

o+

kbdDevicesOn - Restores the original Keyboard

Controller Command Byte.

; Entry: DS = DATA segment.
; Exit: None.
; Modifies: Minor Flags.
; Processing: Puts the Keyboard/AuxDevice transmission Data back in the
; Output Buffer and restores the original state of the Keyboard
; and AuxDevice interfaces, from before the kbdDevicesOff
; Routine if and only if kbdDevicesOff was originally Called.
kbdDevicesOn PROC NEAR PUBLIC
push ax
mov al, OFFh ; Null Command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
call kbdWait41BE ; Wait for last intr=complete
in al, 060h ; Flush Output Buffer
test BYTE PTR ds:[saveStatus], BITO ; Was Output Buffer Full?
jz on2 ; Jmp if no
mov al, 0D2h ; Echo Keyboard ScanCode
test BYTE PTR ds:[saveStatus], BIT5 ; Was it an AuxDevice OBF?
jz onl ; Jmp if no
mov al, 0D3h ; Echo AuxDevice Data
onl: call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, BYTE PTR ds:[saveData] ; Get Controller Data
call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al
on2: mov al, 060h ; Write KCCB command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, BYTE PTR ds:[saveKCCB] ; Get original KCCB
call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al
pop ax
ret
kbdDevicesOn ENDP
56 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 4 of 24)

interfaces, and clear the pending spurious interrupt if
present, from the kbdDisDevices Routine.

o
; kbdDisDevices - Saves the current Keyboard Controller Command Byte and
; disables the Keyboard and Auxiliary Devices. This routine
; to be used in an interruptable environment.
; Entry: DS = DATA segment.
; Exit: None.
; Modifies: saveKCCB, dummyVector, and Minor Flags.
; Note: Problems covered by kbdDisDevices & kbdEnaDevices:
; 1) kbdDisDevices executed while Kbd/Aux data coming in. The
; Data will go to the original Interrupt routine before
; Devices are turned off with no gaps between Commands that
; would allow other Device input.
; 2) The Kbd interface is disabled and if the AuxDevice exists
; it is also disabled. kbdEnaDevices will restore the
; original state.
; 3) The Dummy_Interrupt allows "sticky" PICs to work, "sticky"
; PICs are System were reading port 60h with interrupts
; disabled will still cause a Keyboard Interrupt (spurious
; interrupt).
; 4) The Dummy_Interrupt fixes reading port 60h too quickly on
; Systems that raise IRQ1 & IRQ12 in software rather than
; hardware, which would also cause a spurious interrupt.
; 5) The Specific EOl in kbdEnaDevices allows level sensitive
; PICs (i.e. PS/2 Systems) to work, since the dummylnterrupt
; does not read Port 60h, and therefore would cause
; contineous interrupts.
; Processing: After waiting for the Controller to finish up working on
; the Keyboard/Mouse Transmission in progress, turn Off
; both Devices and Disable Keyboard Controller Interrupts.
; This routine is used in the Main Line code where
; Interrupt Routines are handling both the Kbd/Aux Devices.
kbdDisDevices PROC NEAR PUBLIC
push ax
mov al, 07Dh ; Write RAM Location 3Dh
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al ; Issue Cmd of 2-byte Cmd only
call kbdWait4Quiet ; Wait for IBE & OBE
call installInterrupt ; Kbd intr => Dummy_Interrupt
mov al, 020h ; Read KCCB command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, 060h ; Write KCCB command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, 074h ; Aux/Kbd interface & IRQs off
call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al
call kbdWait40BF ; Wait for Output Buffer Full
mov BYTE PTR ds:[saveKCCB], al ; Save so it can be restored
pop ax
ret
kbdDisDevices ENDP
o
; kbdEnaDevices - Restores the Keyboard Controller Command Byte.
; Entry: DS = DATA segment.
; Exit: None.
; Modifies: Minor Flags.
; Processing: Restore the original state of the Keyboard and Mouse

MultiKey/42i Developer's Technical Reference 57

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 5 of 24)
kbdEnaDevices PROC NEAR PUBLIC

push ax

mov al, 060h ; Write KCCB command

call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al

mov al, BYTE PTR ds:[saveKCCB] ; Get original KCCB

call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al

call restorelnterrupt ; Restore Keyboard interrupt
pop ax

ret

kbdEnaDevices ENDP

installinterrupt - Installs the Dummy Interrupt Vector.
Entry: DS = DATA segment.
Exit: None.
Modifies: Keyboard Interrupt Vector and dummyVector.

Processing: Replace original Keyboard Interrupt vector with Dummy
Keyboard Interrupt Routine.

nstalllnterrupt PROC NEAR

pushf

push es

push ax

cli

mov ax, 0

mov es, ax ; ES => Segment zero
mov ax, WORD PTR es:[9*4+0] ; Get original Offset

mov WORD PTR ds:[dummyVector+0], ax ; Save original Offset
mov WORD PTR es:[9*4+0], OFFSET cs:dummylnterrupt

mov ax, WORD PTR es:[9*4+2] ; Get original Segment
mov WORD PTR ds:[dummyVector+2], ax ; Save original Segment
mov WORD PTR es:[9*4+2], cs ; Install new Vector
pop ax

pop es

popf

ret

installinterrupt ENDP

; restorelnterrupt - Restore original Keyboard Interrupt routine vector.
Entry: DS = DATA segment.
Exit: None.

Modifies: Keyboard Interrupt Vector and dummyVector.

Processing: Restore original Keyboard Interrupt vector saved from the
installinterrupt routine.

r

estorelnterrupt PROC NEAR

pushf

push es

push ax

cli

mov ax, 0

mov es, ax ; ES => Segment zero

mov ax, WORD PTR ds:[dummyVector+0] ; Get original Offset
mov WORD PTR es:[9*4+0], ax

mov ax, WORD PTR ds:[dummyVector+2] ; Get original Segment
mov WORD PTR es:[9*4+2], ax

mov al, 061h

out 020h, al ; Specific EOI to the PIC1
pop ax

pop es

popf

ret

restorelnterrupt ENDP

58 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 6 of 24)

aummylnterrupt
iret
dummy Interrupt

o+

Entry:
Exit:
Modifies:

Processing:

None.
None.

None.

dummy Interrupt - Prevent spurious Keyboard Interrupts.

Several chipsets have problems and create spurious Keyboard
Interrupts even when interrupts are disabled.

PROC NEAR
ENDP

k

push
mov

mov

mov

call
call
call
call
call
call

pop

Entry:
Exit:
Modifies:

Note:

System.
DS = DATA segment.

None.

; kbdChkProcessor - Determine the Type of Keyboard Controller present in the

revision, verinfol, verInfo2, verFlags, and the Minor Flags.

veriInfol ANDed with 11111101b produces...

00010000b
00110000b
00110001b
00110101b
00111001b
00111101b
01111001b
01111101b
10110000b
10000001b
10000001b
10000001b
10010001b
10110001b

Processing: The first step is to

Mul tiKey/3880

Mul tiKey/3880L

MultiKey/51L

Mul tiKey/51LM

MultiKey/H8L

Mul tiKey/H8LM

Mul tiKey/H8LB

Mul tiKey/H8LMB

Mul tiKey/144L

MultiKey/42

MultiKey/42i Revision > 4.00
MultiKey/42E Revision > 3.00
MultiKey/42G

MultiKey/42L

check for an AMI Keyboard Controller.

The next step is to determine if and what type of Phoenix
Keyboard Controller is present and finally check if there
is Auxiliary Device Support.

bdChkProcessor PROC NEAR PUBLIC

ax

BYTE PTR ds:[verinfol], 000h

Clear all Version flags

BYTE PTR ds:[veriInfo2], 000h
BYTE PTR ds:[verFlags], 000h

kbdDisDevices
chkKnown8042
chkPhoenixKBC
chkMul tiKeyKBC
chkAuxDevice
kbdEnaDevices
ax

ret
kbdChkProcessor ENDP

Disable Device interfaces
Is there a Known Controller?
Is it a Phoenix Controller?
Is it a Multikey Controller?
Is there AuxDevice support?
Restore Device interfaces

Entry:
Exit:
Modifies:

Processing:

DS = DATA segment.

None.

chkknown8042 - Check if is an AMI Keyboard Controller product.

revision, verFlags, and Minor Flags.

Issue a special AMI Command (Alh) and see if it generates a
response, if so issue another special AMI Command (CAh) to
see 1f AuxDevice is supported or not.

MultiKey/42i Developer's Technical Reference 59

Chapter 5 - MultiKey Keyboard Controller Routines

chkKnown8042
push
push
in
mov
call
out
mov
call
jc
mov
mov
mov
call

knowl:

Figure 5-1.

PROC NEAR

CX

ax

al, 060h

al, 0Alh

kbdWait41BE

064h, al

cx, 6

kbdDe lay1msOBF

knowl

ah, 000h

WORD PTR ds:[revision],ax
al, OCAh

kbdWait41BE

064h, al

cx, 6

kbdDe lay1msOBF

knowl

BYTE PTR ds:[verFlags], BIT7
al, BITO

knowl

BYTE PTR ds:[verFlags], BIT4
ax

cx

Sample Keyboard Controller Code. (sheet 7 of 24)

Flush Output Buffer
Output Controller Version
Wait for Input Buffer Empty

Wait up to 6ms for OBF
Wait CX * 1ms for OBF
AMI 8042 Cmds? (gmp if no)

Save verison info
Read Controller Mode
Wait for Input Buffer Empty

Wait up to 6ms for OBF
Wait CX * 1ms for OBF

AMI 8042 Cmds? (mp if no)
Set AMI Keyboard Product
Is it a PS/2 environment?
Jmp if no

Set AuxDevice Support

hkPhoenixKBC
push
push
test
jnz
in

cpkbcl:

chkPhoenixKBC

Entry:
Exit:
Modifies:

Processing:

DS = DATA segment.
None.

verFlags and Minor Flags.

chkPhoenixKBC - Check if is a Phoenix Keyboard Controller product.

Issue a special Phoenix Command, which is also a MultiKey

Command, (BAh) and see if it generates a response.

PROC NEAR
CX

ax
BYTE PTR ds:[verFlags], BIT7
cpkbcl

al, 060h

al, OBAh

kbdWait41BE

064h, al

cx, 6

kbdDe lay1msOBF

cpkbcl

BYTE PTR ds:[verFlags], BIT6
ax

cx

ENDP

Is it an AMI Processor?

Jmp if yes

Flush Output Buffer

Read RAM @Index

Wait for Input Buffer Empty

Wait up to 6ms for OBF
Wait CX * 1ms for OBF
A Phoenix KBC? (Jmp if no)
Set a Phoenix Product

Entry:
Exit:
Modifies:

Processing:

DS = DATA segment.

None.

chkMultiKeyKBC - Check if is a MultiKey Keyboard Controller product.

revision, verFlags, verInfol, verInfo2, and Minor Flags.

Issue special MultiKey Commands (B8h & B9h) and see if it

generates a response, if so issue other MultiKey Commands
to get the Revision level and the Version Information.

60

MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 8 of 24)

chkMultikKeyKBC PROC NEAR

push
push
test
jz
in
mov
call
out
mov
call
jc
mov
mov
call
out
call
mov
call
mov
mov
call
out
call
mov
call
mov
or
cmkbel: pop

pop

cx
ax

BYTE PTR ds:[verFlags], BIT6
cmkbcl

al, 060h

al, 0B9h

kbdWait41BE

064h, al

cx, 6

kbdDe lay1msOBF

cmkbcl

BYTE PTR ds:[memoryldx], al
al, 0D5h

kbdWait41BE

064h, al

kbdWai t40BF

ah, al

kbdWai t40BF

WORD PTR ds:[revision], ax
al, 0D6h

kbdWait41BE

064h, al

kbdWai t40BF

BYTE PTR ds:[verinfol], al
kbdWai t40BF

BYTE PTR ds:[verinfo2], al
BYTE PTR ds:[verFlags], BIT5
ax

cx

ret
chkMultiKeyKBC ENDP

Is it a Phoenix Processor?
Jmp if no

Flush Output Buffer

Read RAM Index.

Wait for Input Buffer Empty

Wait up to 6ms for OBF

Wait CX * 1ms for OBF

Jmp if not MultiKey

Save Memory Index for Resume
Read Phoenix PVCS revision
Wait for Input Buffer Empty

Wait for Output Buffer Full

Wait for Output Buffer Full
Save the PVCS revision #
Read Version Info bytes
Wait for Input Buffer Empty

Wait for Output Buffer Full
Processor type, features...
Wait for Output Buffer Full
Speed & IRQ1/IRQ12 line type
Set MultiKey Kbd Controller

C

hkAuxDevice
push
push
test
jnz
in

cadl: pop

chkAuxDevice

Entry: DS = DATA segment.
Exit: None.

Modifies: verFlags and Minor Flags.

; chkAuxDevice - Check if this environment supports a PS/2 Mouse.

Processing: Issue Test AuxDevice Interface Command (A9h) and see if it

generates a response. This Command generates a response
whether or not the Mouse is plugged in. However, the AMI
Keyboard Controller not in the PS/2 environment also responds
(incorrectly) to this Command, that"s why AMI Keyboard

Controller is explictly check for.

PROC NEAR

CX

ax
BYTE PTR ds:[verFlags], BIT7
cadl

al, 060h

al, OA9h

kbdWait41BE

064h, al

cx, 6

kbdDe lay1msOBF

cadl

BYTE PTR ds:[verFlags], BIT4
ax

cX

ENDP

Is it an AMI Processor?

Jmp if no

Flush Output Buffer

Test AuxDevice Interface
Wait for Input Buffer Empty

Wait up to 6ms for OBF
Wait CX * 1ms for OBF
AuxDevice Cmds? (Jmp if no)
Set AuxDevice Support

MultiKey/42i Developer's Technical Reference

61

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 9 of 24)

; M

ULTIKEY SUPPORT R

OUTINES

o+

; kbdWait4lBE -
Entry:

Exit:

Modifies:

; Processing:
K

Waits for the Keyboard Controller
None.
None.

Minor Flags.

Input Buffer to be Empty.

Polls Port 64h waiting for Input Buffer to be Empty (IBE).

bdWait4IBE PROC NEAR PUBLIC

push
in
test
jnz
pop

ibel:

ax
al, 064h
al, BIT1
ibel

ax

ret
kbdWait41BE ENDP

o+

Read 8042 status
Is Input Buffer Empty?
Jmp if no

; kbdWait40BF -
Entry:

Exit:

Modifies:

; Processing:
K

Waits for the Keyboard Controller
None.

AL = Keyboard Controller Data.

AL and Minor Flags.

Polls Port 64h waiting for Output
then reads Port 60h.

bdWait40BF PROC NEAR PUBLIC

push
in
test
jz
pop
in

obfl:

+

ax
al, 064h
al, BITO
obfl

ax

al, 060h

ret
kbdWait40BF ENDP

Output Buffer to be full.

Buffer to be Full (OBF),

Read 8042 status
Is Output Buffer Full?
Jmp if no

Read Output Buffer data

; kbdStatusOBF - Waits for the Output Buffer to

Entry:

Exit:

Modifies:

; Processing:
K

None.

AL
AH

Keyboard Controller Data.
Keyboard Controller Status.

AX and Minor Flags.

Polls Port 64h waiting for Output
then reads Port 60h.

bdStatusOBF PROC NEAR PUBLIC

ret

al, 064h

al, BITO
kbdStatusOBF
ah, al

al, 060h

kbdStatusOBF ENDP

be full and returns Status.

Buffer to be Full (OBF),

Read 8042 status

Is Output Buffer Full?
Jmp if no

Save the Status

Read output buffer

62

MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 10 of 24)

st
; kbdWait4Quiet - Waits for the Keyboard Controller to be not busy.
: Entry: None.
: Exit: None.
: Modifies: AL and Minor Flags.
: Processing: Polls Port 64h waiting for Output Buffer and Input Buffer to
; be empty.
Rdeait4Quiet PROC NEAR PUBLIC
push ax
idle: in al, 064h ; Read 8042 Status
and al, BIT1+BITO ; Are both Buffers Empty?
jnz idle ; Jmp if no
pop ax
ret
kbdWait4Quiet ENDP
; kbdDelayl5us - Timed Delay based on Refresh Timer.
: Entry: CX = Number of 15us to Delay.
: Exit: None.
: Modifies: CX and the Minor Flags.
: Processing: The accuracy of this delay routine is zero to plus 15us,
; since the timing loop must synchronize on the refresh status
; signal (the output of Timer 1 through a flip-flop), which is
; a symmetric square wave with a cycle of 30us. That"s 15us
; per transition. The execution of the entry/exit code,
; including the jumps, must also be added into the total delay
; time. Since both entry and exit sources of error always
; total less than 20us maximum, for a loop time of 120us, the
; loop variance is at most 16.7%.
: Assumptions: System BIOS is shadowed and Timerl is for standard 15us
; refresh (Mode 2, count 012h).
kbdDelayl5us PROC NEAR
push ax
mov ah, not BIT4 ; Force miscompare, preload
dlyl: out OEDh, al ; System 1/0 BUS Delay
in al, 061h ; Get current Port B Status
and al, BIT4 ; Isolate refresh status
cmp al, ah ; Does it match last Status?
je dlyl ; Jmp if yes
mov ah, al ; Save new refresh status
loop dlyl ; Repeat until timer expires
pop ax
ret
kbdDelayl5us ENDP
st
; kbdDelaylms - Timed Delay based on Refresh Timer.
; Entry: CX = Number of milli-seconds to Delay.
; Exit: None.
; Modifies: CX and the Minor Flags.
; Processing: This delay loop provides milli-seconds based timing from the
; BI10S"s 15us refresh rate timer.
; Note: The "kbdDelayl5us" was measured to be 25us delay.

MultiKey/42i

Developer's Technical Reference 63

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 11 of 24)
kbdDelaylms PROC NEAR PUBLIC

push cX

; mov cx, 67 ; Number of 15us in a 1ms
mov cx, 40 ; Number of 15us in a 1ms
call kbdDelay15us ; Delay 15us
pop cX
loop kbdDelaylms ; Repeat until Number of ms
ret

kbdDelaylms ENDP

o+

; kbdDelaylmsOBF - Wait a number of milli-seconds for a Controller response.
Entry: CX = Number of milli-seconds to Wait.

Exit: C
NC

Routine timed out (AL = 000h).
Successful read (AL = Controller Data).

: Modifies: CX, AL, and the Minor Flags.

: Processing: This routine uses the BIOS delay to decide when to give up
; waiting for a Keyboard Controller response. This routine
; only checks every 1ms for a response.

: Note: The "kbdDelayl5us" was measured to be 25us delay.

K

bdDelaylmsOBF PROC NEAR PUBLIC

push cX
in al, 064h ; Read Controller Status
test al, BITO ; Is Output Buffer Full?
jnz dobfl ; Jmp if yes

; mov cx, 67 ; Number of 15us in a 1ms
mov cx, 40 ; Number of 15us in a 1ms
call kbdDelay15us ; Delay 15us
pop

(o4
loop kbdDe lay1msOBF

mov al, 000h Clear return data

stc ; Clr read port 60h
jmp dobf2
dobfl: pop cX
in al, 060h ; Read output buffer
clc ; Set read port 60h
dobf2: ret

kbdDelay1lmsOBF ENDP
o+

; kbdGetVariable - Reads MultiKey Keyboard Controller Variables.
Entry: AH = MultiKey Variable Index.
Exit: AL = Variable Value.

Modifies: AL and Minor Flags.

; Processing: Issue MultiKey Commands B8h (set Index) and BCh to read

; indexed MultiKey variable.

kbdGetVariable PROC NEAR PUBLIC
mov al, 0B8h
call kbdWait41BE
out 064h, al
mov al, ah
call kbdWait41BE
out 060h, al
mov al, 0BCh
call kbdWait41BE
out 064h, al
mov al, OFFh ; Null Command
call kbdWait41BE Wait for Input Buffer Empty
out 064h, al Make sure data is from BCh
call kbdWait41BE Wait for Input Buffer Empty
call kbdWait40BF Wait for Output Buffer Full

Set memory index
Wait for Input Buffer Empty

Index number
Wait for Input Buffer Empty

Read virtual memory
Wait for Input Buffer Empty

ret
kbdGetVariable ENDP

64 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 12 of 24)

+

kbdSetVariable - Writes MultiKey Keyboard Controller Variables.

Entry: AH = MultiKey Variable Index.
AL = Variable Data.
Exit: None.

Modifies: Minor Flags.

Processing: Issue MultiKey Commands B8h (set Index) and BDh to write
indexed MultiKey variable.

T Y

bdSetVariable PROC NEAR PUBLIC
push ax
mov al, 0B8h
call kbdWait41BE
out 064h, al
mov al, ah
call kbdWait41BE
out 060h, al
mov al, OBDh
call kbdWait41BE
out 064h, al
pop ax

call kbdWait41BE
out 060h, al
ret

kbdSetVariable ENDP

Set memory index
Wait for Input Buffer Empty

Index number
Wait for Input Buffer Empty

Write virtual memory
Wait for Input Buffer Empty

Wait for Input Buffer Empty

o+
kbdGetProcRAM - Reads MultiKey Keyboard Controller Memory.
Entry: AH = MultiKey Memory Index.
Exit: AL = Variable Value.
Modifies: AL and Minor Flags.

Processing: Issue MultiKey Commands B8h (set Index) and BAh to read
indexed MultiKey Memory byte.

TR I

bdGetProcRAM PROC NEAR PUBLIC
mov al, 0B8h
call kbdWait41BE
out 064h, al

Set memory index
Wait for Input Buffer Empty

mov al, ah ; Index number

call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al

mov al, O0BAh ; Read 8042 memory

call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al

mov al, OFFh ; Null Command

call kbdWait41BE
out 064h, al

call kbdWait41BE
call kbdWai t40BF

Wait for Input Buffer Empty
Make sure data is from BAh

Wait for Input Buffer Empty
Wait for Output Buffer Full

ret
kbdGetProcRAM ENDP

o+

kbdSetProcRAM - Writes MultiKey Keyboard Controller Memory.

Entry: AH = MultiKey Memory Index.
AL = Variable Data.
Exit: None.

Modifies: Minor Flags.

Processing: Issue MultiKey Commands B8h (set Index) and BBh to write
indexed MultikKey memory byte.

MultiKey/42i Developer's Technical Reference 65

Chapter 5 - MultiKey Keyboard Controller Routines

kbdSetProcRAM
push
mov
call
out
mov
call
out
mov
call
out
pop
call
out

ret
kbdSetProcRAM

Figure 5-1. Sample Keyboard Controller Code. (sheet 13 of 24)
PROC NEAR PUBLIC

ax
al, 0B8h ; Set memory index
kbdWait41BE ; Wait for Input Buffer Empty
064h, al

al, ah ; Index number

kbdWait41BE ; Wait for Input Buffer Empty
060h, al

al, 0BBh ; Write 8042 memory
kbdWait41BE ; Wait for Input Buffer Empty
064h, al

ax

kbdWait41BE ; Wait for Input Buffer Empty
060h, al

ENDP

MULTIKEY/Z421 CONFIGURATION

kcState DB 001h ; (1) Keyboard Controller State flags
kecTmrFlgs DB 000h ; (2) Timer Miscellaneous State flags
kcTmRatel DB OF7h ; (3) Timer value 380us, Device Bit time
kcTmRate2 DB 0C4h ; (4) Timer value 2.4ms, Byte Receive time
kcTmRate3 DB 000h ; () Timer value 11.7ms, Start Bit time
kcTmRate4 DB OCFh ; (6) Timer value 0.5s, Flashing LED time
kcTmRate5 DB 000h ; (7) Timer value 30s-128m, Inactivity time
kcKStatel DB 000h ; (8) Keyboard ScanCode Set & LED State
kcKState2 DB 000h ; (9) Keyboard Typematic Delay & Rate
keMisc DB 004h ; Keyboard Controller Miscellaneous flags
kcTstlPin DB 000h ; External Input Event Pin mask (PIN1TSK)
kcTst2Pin DB 000h ; External Input Event Pin mask (PIN2TSK)
kcPswNul 11 DB 000h ; Sent when Password enabled (if not 0)
kcPswNul 12 DB 000h ; Sent when Password disabled (if not 0)
kcPswScanl DB 000h ; Ignored ScanCode when Password = enabled
kcPswScan2 DB 000h ; Ignored ScanCode when Password = enabled
kcHotTasks DW 000FOh, 00000h, 00000h, 00000h, 000D3h
kcLckTasks DW 00000h, 00000h
kcTmrTask DW 00801h
kcPinTasks DW 00000h, 00000h
kcHotKeys DB 03Bh, 000h, 000h, 000h, 010h, 01Dh, 038h

; UAAAAAAAAAAAAAAAAAAA MultiKey Variable Index

; 3 UAAAAAAAAAAAAAA Feature Data Mask

; 3 3
kcVarsTable DB 001h,009h, 002h,003h, 003h,0FFh, 004h,0FFh

DB 005h,0FFh, 006h,0FFh, 007h,0FFh, 008h,000h

DB 009h,080h, 000h
kcMemoryldx DB 002h,01Ch,01Dh,033h,034h,036h,037h,040h,041h,042h

DB 043h,044h,045h,046h,047h,048h,049h,04Ah,04Bh,04Ch

DB 04Dh,04Eh,04Fh,050h,051h,052h,053h,054h,055h,056h

DB 057h,058h,059h,05Ah,000h

66

MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 14 of 24)

; KEYBOARD CONTROLLER®*™S CONFIGURATION

o+

N 1M M NI NI S TN I NI IS TN NI IS I NI NI Tty

cfgl:

cfg2:

cfg3:
cfg4:

cfg5:

Entry:
Exit:
Modifies:

Processing:

Assumption:

push
push
push
push
mov
call
mov
mov
mov
cmp
jz
mov
cmp
ja
call
mov
not
and
mov
and
or
call
add
inc
Jmp
mov
mov
cmp
jz
mov
mov
call
inc
inc
Jmp
pop
pop
pop
pop

kbdCfgController - Download the configuration to the Keyboard Controller.

None.
None.
All Keyboard Controller variables and the Minor Flags.

This routine downloads the Keyboard Controller Configuration
and sets all the MultiKey/42i features based on the above
table. The above information is a .42i file (exactly as shown)
created from the CFG42.EXE (Version 1.4 or above), and
imported into the Code. Both the Mouse & Keyboard are
disabled. Then the Keyboard Controller Configuration is
downloaded through the VirtualRAM (MultiKey Variable) and
direct Memory access Commands.

Keyboard Controller is a MultiKey/42i Product and both Mouse
and Keyboard device interfaces are Disabled.

bdCfgController PROC NEAR PUBLIC

si

dx

bx

ax

ah, 000h ; Reference Virtual Table Size
kbdGetVariable AH=Index : AL=Data

dl, al DL = # of Supported Indexes

bx, OFFSET cs:kcState
si, OFFSET cs:kcVarsTable
BYTE PTR cs:[si+0], O

Pointer to the top of Data
Table of Variable indexes
Is this the Table End?

cfg3 Jmp if yes

ah, BYTE PTR cs:[si+0] Get index to update

ah, d Does KBC support variable?
cfg2 Jmp if no

kbdGetVariable AH=Index : AL=Data

dh, BYTE PTR cs:[si+1] Get Mask information

dh Build up an AND Mask

al, dh Clear current feature bits

Get Variable Value
Isolate only feature bits

dh, BYTE PTR cs:[bx]
dh, BYTE PTR cs:[si+1]

al, dh Combine the bits
kbdSetVariable AH=Index, AL=Data
si, 2 Next index

bx Next data

cfgl

bx, OFFSET cs:kcMisc

si, OFFSET cs:kcMemoryldx
BYTE PTR cs:[si], O

cfg5

ah, BYTE PTR cs:[si]

al, BYTE PTR cs:[bx]
kbdSetProcRAM

si

Pointer to the top of Data
Table of Memory indexes

Is this the Table End?

Jmp if yes

Get index to update

Get Data to update
AH=Index, AL=Data

Next index

Next data

ret
kbdCfgController ENDP

MultiKey/42i Developer's Technical Reference 67

Chapter 5 - MultiKey Keyboard Controller Routines

+

Figure 5-1. Sample Keyboard Controller Code. (sheet 15 of 24)

kbdPortSwapping - Configures which port has a Mouse & which has a Keyboard.

; Entry: None.

; Exit: None.

; Modifies: Keyboard Controller kcState variable and the Minor Flags.

; Processing: To determine which port has a Mouse and which port has

; Keyboard, issue an ECh (Reset Echo Command) to both ports

; and observe the responses.

; UAAAAYAA AT Environment (kcState.l = 1)?

; 3 Set Ports Not Swapped (kcState.0 = 1)

; 3 Set Devices = Active

; 3 Flush Both Device Ports

; 3 Issue Aux Cmd = ECh

; 3 UAAYAA Valid Aux Device (Rsp = FAh)?

; 3 Device Attached (Sts = no Error)? AANAAc

; 33 Issue Kbd Cmd = ECh

; 3 RAANAA Valid Aux Device (Rsp = FAh)? 3

; 33 Set Ports Swapped (kcState.0 = 0) <AAAAU

; 3 MAAA> Set Devices = Inactive

; AAAAAAA> Done

; Note: This Routine must be executed before the Device Reset Code.

; Assumption: Keyboard Controller = /42G,/C42,/42E, or /42i Product

kbdPortSwapping PROC NEAR PUBLIC
push cX
push ax
mov ah, 001h ; Reference kcState
call kbdGetVariableFar ; AH=Index : AL=Data
test al, BIT1 ; Is 1t an AT Environment?
jnz port4 ; Jmp if yes
mov al, 060h ; Write KCCB command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, 044h ; Set Devices = Active
call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al
mov ah, 001h ; Reference kcState
call kbdGetVariableFar ; AH=Index : AL=Data
or al, BITO ; {kcState.0} set Not Swapped
call kbdSetVariable ; AH=Index, AL=Data

portl: mov cXx, 6 ; Wait up to 6ms for any data
call kbdDe lay1msOBF ; Wait CX * 1ms for OBF
jnc portl ; Jmp if there was data
mov al, OECh ; Reset Echo (Wrap) mode Cmd
call kbdSend2Mouse ; AL => Mouse wait for rsp
jz port3 ; An Acknowledge? (gmp if yes)
test ah, BIT6 ; Is there a Device Attached?
jz port2 ; Jmp if yes
mov al, OECh ; Invalid Keyboard Command
call kbdSend2Keyboard ; AL => Keyboard wait for rsp
jnz port3 ; An Acknowledge? (Jmp if no)

port2: mov ah, 001h ; Reference kcState
call kbdGetVariableFar ; AH=Index : AL=Data
and al, not BITO ; {kcState.0} set Swapped
call kbdSetVariable ; AH=Index, AL=Data

port3: mov al, 060h ; Write KCCB command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, 074h ; Set Devices = Inactive
call kbdWait41BE ; Wait for Input Buffer Empty
out 060h, al

port4d: pop ax
pop cX
ret

kbdPortSwapping ENDP

68 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 16 of 24)

+

kbdCalibrateTmrs - Calibrate MultiKey/42i"s Inac
Entry: None.
Exit: None.
Modifies: Keyboard Controller tmRate4 variab
Processing: Calibrate the MultiKey/42i"s Inact
the time it takes to respond from
The AAh Command re-initializes the

Command Byte), so it must be saved
are adjusted by updating tmRate4 vi

following:

clock = The Keyboard Controller

cycle = Processor Cycle Executi

cycle = 15/clock

clk10 = 10*clock
T = Measured Length of the
T = [2400+(76*cycle)]/0.838

2400 = cycle*32*(256-TMRATE2)

T = [cycle*32*(256-TMRATE2)
T = [(15/clock)*32*(256-TMR

clock = [572.8*(256-TMRATE2)+13

clk10 = [5728*(256-TMRATE2)

0.1172 = 30/256
117200 = cycle*32*256*(256-TMRAT
11720 = [122880*(256-TMRATE4)]/
tmRated = 256-[((95*c1k10)+500)71

Assumption: Keyboard Controller = MultiKey/42i

T o Ty

bdCalibrateTmrs PROC NEAR PUBLIC
pushf
push ax
push bx
push dx
cli
call getTimerCnfg ;
push ax ;
mov al, 00110100b ;
mov bx, OFFFFh ;
call configureTimer ;
mov al, 020h ;
call kbdWait41BE ;
out 064h, al
mov al, OFFh ;
call kbdWait41BE ;
out 064h, al
call kbdWait41BE ;
call kbdWait40BF ;
push ax ;

tivity Timer values.

le and the Minor flags.

ivity Timers by measuring
the AAh (Self Test) Command.
KCCB (Keyboard Controller
and restored. The Timers
ariable as per the

Input Clock (MHz)
on Time (&s)

AAh Command (&s)

+(76*cycle)]/0.838
ATE2)+(76*(15/clock))]/0.838
60.41/T

+136041/T

E4)
clk10
000]

Product

Get Current Timer(Q state
Save for restoration

Tmr0 => LSB 1st,Mode2,binary
54_9ms Interrupt output
Program the 8254 Timer Chip
Issue Read KCCB Command

Wait for Input Buffer Empty

Issue Null Command
Wait for Input Buffer Empty

Wait for Input Buffer Empty
Wait for Output Buffer Full
Save KCCB for later

MultiKey/42i Developer's Technical Reference

69

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 17 of 24)

kbcl: in al, 060h
mov al, OAAh
call kbdWait41BE
out 064h, al
call kbdWait41BE
call readTimer
mov bx, ax
call kbdWai t40BF
cmp al, 055h

jnz kbcl

call readTimer
sub bx, ax
Js kbcl

mov ah, 004h
call kbdGetVariable
mov ah, 000h

neg al

mov dx, 5728
mul dx

add ax, 13604
adc dx, 0
div bx

mov bx, 95
mul bx

add ax, 500
mov dx, 00000h
mov bx, 003E8h

div bx
neg ax
mov ah, 006h

call kbdSetVariable
mov al, 060h

call kbdWait41BE
out 064h, al

pop ax

call kbdWait41BE
out 060h, al

pop ax

mov bx, OFFFFh
call configureTimer

pop dx
pop bx
pop ax
popf

ret
kbdCalibrateTmrs ENDP

Flush 8042 output buffer

; 8042 Self Test Command

Wait for Input Buffer Empty
Wait for Input Buffer Empty

Save for time calculation
Wait for Output Buffer Full
Was it a successful test?
Jmp if no

Tick=1.193182 MHz clock rate
Calculate delta time (T)

IT rollover, do again
Reference tmRate2

AH=Index : AL=Data

256-TMRATE2

5728 * (256-tmRate2)

5728 * (256-tmRate2) + 13604
Add in carry if present
Divide by T (measured)

AX = (95 * clkl10)
Add in 0.5
DXAX = [95 * clk10 + 500]
= 1000
AX = [95(10*clk)+500]/1000
= 0-[95(10*clk)+500]/1000
Timer Compensation (tmRate4)
AH=Index, AL=Data
Write KCCB command
Wait for Input Buffer Empty

Get original KCCB
Wait for Input Buffer Empty

Get original TimerO state
54._9ms Interrupt output
Program the 8254 Timer Chip

Entry: None.

170" delay.

readTimer PROC NEAR
mov al, 0
out 043h, al
out OEDh, al

in al, 040h
mov ah, al
out OEDh, al
in al, 040h
xchg ah, al
ret

readTimer ENDP

Exit: AX = Timer Value.

Modifies: AX and Minor Flags.

; readTimer - Latches the 8254 (System Timer) Data.

Processing: Latch the 8254 Data using an Out to Port EDh as the "Wait for

; Set counter latch for 8254

; System 1/0 BUS Delay
; Read low byte

; System 1/0 BUS Delay
; Read high byte

70

MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 18 of 24)

; configureTimer - Program the System Timer (8254) to a particular Mode.

Timer Control Byte.

Entry: AL
BX = The Interrupt Rate.

; Modifies: Minor Flags.
: Processing: Write to the 8254"s Control register the Control Byte.
configureTimer PROC NEAR

push ax

out 043h, al ; Set Timer Mode as pass in

out OEDh, al System 1/0 BUS Delay

mov ax, bx 1.193182 MHz clock rate

out 040h, al Program LSByte first

out OEDh, al System 1/0 BUS Delay

mov al, ah

out 040h, al ; Program MSByte second
pop ax

ret

configureTimer ENDP

; getTimerCnfg - Read and Save the Original TimerQ State of the 8254.

: Entry: None.

: Exit: AL = Timer Control Byte.

: Modifies: AL = Minor Flags.

; Processing: Read the TimerO Control Byte from the Control Register.
9

etTimerCnfg PROC NEAR

mov al, 11100010b ; Set Latch Status of TimerO
out 043h, al

out OEDh, al ; System 1/0 BUS Delay

in al, 40h ; Read the Status byte

and al, 00111111b ; Setup TimerO for restore
ret

getTimerCnfg ENDP

; MULTIKEY/Z421 SETUP ROUTINES

+

kbdWait4Security - Waits for Security to be disabled.
Entry: None.
Exit: AL = SMI value for Password Entered.
Modifies: Minor Flags.
Processing: Waits for Security to be disabled by watching the Status port
g;:eﬁeg?ninhibited). Then inquires which Password was

Assumption: Keyboard Controller = MultiKey/42i Product

MultiKey/42i Developer's Technical Reference 71

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 19 of 24)
kbdWait4Security PROC NEAR PUBLIC

push bx
mov bx, ax ; Save AH value

kws1: in al, 064h Get Controller Status
test al, BIT4 Is Security still enabled?
jz kws1 Jmp if yes

mov ah, 00Ah
call kbdGetVariable

Reference SMI Function value
AH=Index : AL=Data

mov ah, bh Restore AH value
pop bx
ret

kbdWait4Security ENDP

o+

; kbdSetlnactiveTmr - Updates the Inactivity Timer value.

Entry: AL = Timer value in 30 second intervals.
AL = 000h, Disables Inactivity Timer and Resumes.
Exit: None.

Modifies: Keyboard Controller variables and the Minor Flags.
Processing: Update the Inactivity Timer in the Keyboard Controller.

Assumption: Keyboard Controller = MultiKey/42i Product

k

bdSetlnactiveTmr PROC NEAR PUBLIC
push ax
mov al, OAFh ; Setup Inactivity Timer
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
pop ax
call kbdWait41BE ; Wait for Input Buffer Empty

out 060h, al
ret
kbdSetlnactiveTmr ENDP

o+

kbdGetlnactiveTmr - Reads the Inactivity Timer"s current value.
Entry: None.

Exit: AL
AL

Timer value in 30 second intervals.
000h, Inactivity Timer is disabled.

Modifies: AX and the Minor Flags.

Processing: Read the MultiKey variable (index 7) from the Keyboard
Controller. Since the Keyboard Controller stores the variable
internally as the Two"s Compliement of the value set in the
kbdSetlnactiveTmr routine.

Assumption: Keyboard Controller = MultiKey/42i Product

RN u e N NI IS I NI NI I IS TN IS TN TNy

bdGetlInactiveTmr PROC NEAR PUBLIC
mov ah, 007h ; Reference kcTmRate5 value
call kbdGetVariable ; AH=Index : AL=Data
neg al ; Build up two"s compliement

ret
kbdGetlnactiveTmr ENDP

72 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 20 of 24)

TR e

klpl:

kbdLoadPassword - Down the Password to the Keyboard Controller.

Entry: AL = Load Password Command (A5h=Normal, A3h=Extended).
DS:BX => Password (null terminated string).

Exit:

Modifies:

Processing:

Note:

bdLoadPassword

push
push
call
out
mov
call
out
inc
cmp
jnz
pop
pop

None.

Minor Flags.

Load either the normal or extended Password based on the
Command passed through AL. Send all ScanCodes in the Password

String including the Zero.

plus 1 for the null (000h) value.

Password maximum size is 16 bytes

Once one of the Passwords is loaded the Keyboard Controller®s

Configuration cannot be changed.

PROC NEAR
bx
ax
kbdWait41BE
064h, al
al, BYTE PTR ds:[bx]
kbdWait41BE
060h, al

bx
al, 000h
klpl
ax

bx

ret
kbdLoadPassword ENDP

Wait for Input Buffer Empty
Issue Password Command

Get Password ScanCode

Wait for Input Buffer Empty
Send Password Data

Next Password entry

Was that the Password end?
Jmp if no

KEYBOARD/MOUSE

POST

ROUTINES

st
K

tdol:

Entry:
Exit:

Modifies:

Processing:

bdStopDevices

push
test
jz
mov
call
mov
call
out
mov
call
mov
call
mov
call
mov
call
out
pop
ret

DS = DATA segment.
None.

Minor Flags.

; kbdStopDevices - Disable Keyboard and Auxiliary

Devices at Devices.

Issue Keyboard Command F5h (disable Scanning) and turn off
Keyboard LEDs to save power (17ma per external LED). If this
PS/2 Environment issue Mouse Command F5h (disable Movement).
Leave both interfaces disabled in addition, since the User
could plug in the Keyboard and enabled the Device.

PROC NEAR PUBLIC

ax
BYTE PTR ds:[verFlags], BIT4
tdol

al, OF5h

kbdSend2Mouse

al, 0A7h

kbdWait41BE

064h, al

al, OF5h

kbdSend2Keyboard

al, OEDh

kbdSend2Keyboard

al, 000h

kbdSend2Keyboard

al, 0ADh

kbdWait41BE

064h, al

ax

kbdStopDevices ENDP

Is it a PS/2 environment?
Jmp if no

Disable AuxDevice @Mouse

AL => Mouse wait for rsp
Disable AuxDevice interface
Wait for Input Buffer Empty

Disable Keyboard @Device

AL => Keyboard wait for rsp
Set/Clear LED Command

AL => Keyboard wait for rsp
Turn off all LEDs

AL => Keyboard wait for rsp
Disable Keyboard interface

Wait for Input Buffer Empty

MultiKey/42i Developer's Technical Reference

73

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 21 of 24)

+

kbdFlushDevices - Check and flush Data from Keyboard Controller and Devices.
Entry: DS = DATA segment.
Exit: None.
Modifies: Minor Flags.

Processing: This is a very important routine which trys to determine when
the Devices are ready to accept Commands and at the same time
flushes the Devices Buffers. This routines leaves both
Devices Disabled. If either Device after all the retrys
fails the Command the Device is marked not present. When the
Keyboard and AuxDevice commands are issued the interface is
automatically open that what makes this routine affective.

TR I I I

bdFlushDevices PROC NEAR PUBLIC

push cX
push ax
and BYTE PTR ds:[verFlags], not BIT1; Set no Keyboard attached
mov cx, 3 ; Number of retries

flshl: push cX
mov cx, 500 Delay 0.5s for devices
call kbdDelaylms Wait CX * 1ms
in al, 060h Flush 8042 output buffer

mov al, OF5h

call kbdSend2Keyboard
pop [o'¢

cmp al, OFAh

Disable keyboard @device
AL => Keyboard wait for rsp

Is it an Acknowledgement?

loopnz flshl ; Retry if no
jnz flsh2 ; Jmp 1if no
or BYTE PTR ds:[verFlags], BIT1 ; Set Keyboard attached
flsh2: test BYTE PTR ds:[verFlags], BIT4 ; Is it a PS/2 environment?
jz flsh4 ; Jmp if no
and BYTE PTR ds:[verFlags], not BIT2; Set no PS/2 Mouse attached
mov cx, 3 ; Number of retries
flsh3: push cX
mov cx, 500 Delay 0.5s for devices
call kbdDelaylms Wait CX * 1ms
in al, 060h Flush 8042 output buffer

mov al, OF5h

call kbdSend2Mouse
pop cX

cmp al, OFAh

Disable AuxDevice @device
AL => Mouse wait for rsp

Is it an Acknowledge?

loopnz flIsh3 ; Retry if no

jnz flsh4 ; Jmp 1f no

or BYTE PTR ds:[verFlags], BIT2 ; Set PS/2 Mouse attached
flsh4: mov cX, 5 ; Wait up to 5ms

call kbdDe lay1msOBF ; Wait CX * 1ms for OBF

jnc flsh4 ; Jmp if there was data

pop ax

pop cX

ret
kbdFlushDevices ENDP

+

kbdRstController - Reset Keyboard Controller using the "SelfTst" Command.
Entry: DS = DATA segment.
Exit: None.
Modifies: Minor Flags.

Processing: Issue Command AAh (Controller Self Test) and wait for the
response. This must be the first Controller Command.

74 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 22 of 24)

kbdRstController PROC NEAR PUBLIC

push ax
mov al, OAAh ; 8042 Self Test command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
mov al, OFFh ; Null Command
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al ; Make last Command complete
call kbdWait41BE ; Wait for Input Buffer Empty
call kbdWai t40BF ; Wait for Output Buffer Full
mov al, OADh ; Disable kbd device interface
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
test BYTE PTR ds:[verFlags], BIT4 ; Is it a PS/2 environment?
jz rCtril ; Jmp if no
mov al, OA7h ; Disable aux device interface
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al

rCtril: pop ax
ret

kbdRstController ENDP

T+

; kbdRstKeyboard - Reset Keyboard and leave the

Device Disabled.

; Entry: DS = DATA segment.
; Exit: None.
; Modifies: Minor Flags.
; Processing: If a Keyboard is attached, issue Keyboard Command FFh (Reset)
; and wait for the responses. The Keyboard is then disabled
; at the Device along with the interface.
kbdRstKeyboard PROC NEAR PUBLIC
push cX
push ax
test BYTE PTR ds:[verFlags], BIT1 ; Is there a Kbd attached?
jz krst2 ; Jmp if no
in al, 060h ; Flush Output Buffer
mov al, OFFh ; Reset Keyboard command
call kbdSend2Keyboard ; AL => Keyboard wait for rsp
cmp al, OFEh ; Is it an transmission error?
jz krst2 ; Jmp if yes
cmp al, 0AAh ; Is it the answer already?
jz krstl ; Jmp if yes
cmp al, OFAh ; Is it an Acknowledge?
jnz krstl ; Jmp if no
call kbdWait40BF ; Wait for Output Buffer Full
krstl: mov al, OF5h ; Disable keyboard @device
call kbdSend2Keyboard ; AL => Keyboard wait for rsp
krst2: mov al, 0ADh ; Disable keyboard interface
call kbdWait41BE ; Wait for Input Buffer Empty
out 064h, al
pop ax
pop cx
ret
kbdRstKeyboard ENDP
T+

kbdRstPS2Mouse - Reset the Auxiliary Device and

Entry: DS = DATA segment.
Exit: None.
Modifies: Minor Flags.

Processing:

leave the Device Disabled.

IT it is a PS/2 Environment and a Mouse is attached, issue
Mouse Command FFh (Reset) and wait for the responses.
Mouse is then disabled at the Device along with the interface.

The

MultiKey/42i Developer's Technical Reference

75

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 23 of 24)

kbdRstPS2Mouse PROC NEAR PUBLIC

push ax

test BYTE PTR ds:[verFlags], BIT4
jz mrst4

test BYTE PTR ds:[verFlags], BIT2
jz mrst3

in al, 060h

mov al, OFFh
call kbdSend2Mouse
cmp al, 000h

jz mrst2
cmp al, 0AAh
jz mrstl
cmp al, OFAh
jnz mrst3

call kbdWait40BF
cmp al, 000h

jz mrst2

cmp al, 0AAh

jnz mrst2
mrstl: call kbdWai t40BF
mrst2: mov al, OF5h

call kbdSend2Mouse
mrst3: mov al, OA7h

call kbdWait41BE
out 064h, al
mrst4: pop ax
ret
kbdRstPS2Mouse ENDP

+

Is it a PS/2 environment?
Jmp if no

Is there a Mouse attached?
Jmp if no

Flush Output Buffer

Reset Aux Device command
AL => Mouse wait for rsp

Is it the answer already?
Jmp if yes

Is it the answer already?
Jmp if yes

Is it an Acknowledge?

Jmp if no (Error)

Wait for Output Buffer Full
Is it the answer already?
Jmp if yes

Is it the answer?

Jmp if no (Error)

Wait for Output Buffer Full
Disable AuxDevice @device
AL => Mouse wait for rsp
Disable aux device interface
Wait for Input Buffer Empty

kbdSend2Keyboard - Sends Command/Data to Keyboard Device.

Entry: AL = Command/Data to be sent.

Exit: AH
AL

Controller Status.
Response from Device.

Modifies: AL and Minor Flags.

Processing: Send Command/Data to Port 60h (send to KbdDevice) and wait
for the response.

T Y

bdSend2Keyboard PROC NEAR PUBLIC
push ax
in al, 060h ; Flush Output Buffer
call kbdWait41BE ; Wait for Input Buffer Empty
pop ax

out 060h, al
call kbdWait41BE
call kbdStatusOBF

Send Command/Data to Kbd
Wait for Input Buffer Empty
Wait for OBF (AH = Status)

ret
kbdSend2Keyboard ENDP

o+

kbdSend2Mouse - Sends Command/Data to Auxiliary Device.

Entry: AL = Command/Data to be sent.

Exit: AH
AL

Controller Status.
Response from Device.

Modifies: AL and Minor Flags.

Processing: Issue Command D4h (send to AuxDevice) and wait for the
response.

76 MultiKey/42i Developer's Technical Reference

Chapter 5 - MultiKey Keyboard Controller Routines

Figure 5-1. Sample Keyboard Controller Code. (sheet 24 of 24)

kbdSend2Mouse PROC NEAR PUBLIC

push ax

mov al, 0D4h

call kbdWait41BE

out 064h, al

call kbdWait41BE

in al, 060h

pop ax

out 060h, al

call kbdStatusOBF

ret
kbdSend2Mouse ENDP

; Send to AuxDevice command
; Wait for Input Buffer Empty

; Wait for Input Buffer Empty
; Flush Output Buffer
; Get Data to be sent

; Wait for OBF (AH = Status)

CODE ENDS

MultiKey/42i Developer's Technical Reference 77

Chapter 5 - MultiKey Keyboard Controller Routines

This page left blank.

78 MultiKey/42i Developer's Technical Reference

Index

0 Architectural Considerations............c.cccecuene. 11
ARESND
00h-1Fh Memory Map Definitionccevceerienne 22
Standard Keyboard Command..................... 28 AUXCLK PIN .. 17
1 AUXDATA PIN et 17
Auxiliary Device
12MHz KBC Platform Support...........cccceeenee. 11 see Status Registeroovveveiieiieeeee 27
5 AUXRSP
Memory Map Definitionccevceerienne 22
20h-3Fh B
Standard Keyboard Command..................... 28
4 B8h
Extended Command...........cccoceervererrennnn. 29
40h-5Fh Boh
Standard Keyboard Command..................... 28 Extended Command...........cccceeveeeiienriennne 29
6 BAh
Extended Command...........cccoceervererrennnn. 29
60h-7Fh BBh
Standard Keyboard Command..................... 28 Extended Command...........cccceeveeeiienriennne 29
A BCh-BDh
Extended Command...........cccoceervereernnnnnn. 29
A2h BREAK
Extended Command.............coceeveernieeniennns 29 Memory Map Definitionccevceerienne 22
A3h c
Extended Command...........ccoceeveereeneeniens 29
A4h COh
Standard Keyboard Command..................... 28 Standard Keyboard Command 28
A5h Clh
Standard Keyboard Command..................... 28 Standard Keyboard Command 28
A6h C2h
Standard Keyboard Command..................... 28 Standard Keyboard Command 28
A7h C7h
Standard Keyboard Command..................... 28 Extended Command............cccoeveeeiienriennne 29
A8h C8h
Standard Keyboard Command..................... 28 Extended Command............cccoeveeeiienriennne 29
A%h Coh
Standard Keyboard Command..................... 28 Extended Command...........ccccoeveeeiieniienne 29
AAh CAh
Standard Keyboard Command..................... 28 Extended Command...........ccccoeveeeiieniienne 29
ABh Command INVOCaLIoN..........ccceereereerienieniens 27
Standard Keyboard Command..................... 28 Command/Data (F1)
ACh see Status Registeroooveveiieeieeeee 27
Standard Keyboard Command..................... 28 Configuration Utility Overview............cc.ce.... 33
Activity Restored by Mouse, Keyboard and Configuration Utility Screen Attributes.......... 38
External INputcoooeeiiiniiie e 10 Configuring HotKeysand Tasks..........ccccuee.e 42
ADh Configuring Inactivity Timer and Tasks 44
Standard Keyboard Command..................... 28 Configuring Input Pin Events and Tasks........ 43
AEh Configuring Miscellaneous Features.............. 48
Standard Keyboard Command..................... 28 Configuring Password Security and Tasks..... 46
AFh
Extended Command...........ccoceeveereeneeniens 29
MultiKey/42i Developer's Technical Reference i

D F
DOh FOh
Standard Keyboard Command.................... 28 Auxiliary Command..........cccoeveeerieriiienene 31
D1h F1h
Standard Keyboard Command.................... 28 Auxiliary Command..........cccoeveeerieriiienene 31
D2h Keyboard Command............cccoveiiiiienienne 31
Standard Keyboard Command.................... 28 F2h
D3h Auxiliary Command..........cccoeveeeieriiienene 31
Standard Keyboard Command.................... 28 Keyboard Command............cccoveiinienienne 31
D4h F3h
Standard Keyboard Command.................... 28 Auxiliary Command..........cccevveerieeiiienene 31
D5h Keyboard Command............cccoveiiniienenne 31
Extended Command...........cccceereeneeneenieens 29 F4h
D6h Auxiliary Command..........ccceeveeeerieriiienene 31
Extended Command.........c..ccceveiinieeniiennns 29 Keyboard Command............ccccoveiiniiinenne 31
D7h F5h
Extended Command............ccceveeenieeninennns 29 Auxiliary Command..........ccceeveeeerieriiienene 31
Default Scan Code Conversion Table............. 24 Keyboard Command............ccccoveeinienenns 31
Dual Password SUPPOrt........ccceevveeriiereneeenienn. 3 F6h
E Auxiliary Command..........ccceevveerieriiienene 31
Keyboard Command............cccoveiiniiinienns 31
EOh F7h
Keyboard Command............ccccoveiiniienenns 31 Keyboard Command............ccccoveiiiiienenne 31
Standard Keyboard Command.................... 28 F7h - FDh
E6h Auxiliary Command..........cccoeveeeerieriniennne 31
Auxiliary Command...........ccceveeerieriiiennne 31 F8h
E7h Keyboard Command............ccccoveiiiiienenne 31
Auxiliary Command...........ccceveveerieniiienenn 31 FOh
E8h Keyboard Command............ccccoveiiiiienenne 31
Auxiliary Command...........ccceveeerieriniennne 31 FAh
ESh Keyboard Command............ccccoveiiiiienenns 31
Auxiliary Command...........ccceveeerieriiienenn 31 FBh
EAh Keyboard Command............ccccoveiiiiienenns 31
Auxiliary Command...........ccceveeerieriniennnn 31 FCh
EBh Keyboard Command............ccccoveiiiiienenns 31
Auxiliary Command...........ccceveeeriierriienenn 31 FDh
ECh Keyboard Command............ccccoveiiiiienenns 31
Auxiliary Command...........ccceveeerieniiiennnn 31 FEh
EDh Auxiliary Command..........cccoeveeerierniienene 31
Auxiliary Command...........ccceveeerieniiiennnn 31 Keyboard Command............ccccoveiiniiinienns 31
Keyboard Command............cccceeeiiniienenns 31 FFh
EEh Auxiliary Command..........ccceeveeeerieriiienene 31
Auxiliary Command...........ccceveeerieriiiennnn 31 Keyboard Command............ccccoveiiniiennenne 31
Keyboard Command............ccceveiiniieniienns 31 FUNCTION
EFh Memory Map Definition...........cccoeveeevienne 23
Auxiliary Command...........ccceveeerieniiienene 31 FUNCTION
Keyboard Command............ccceeeiiniienienns 31 e BCh-BDh ..., 29
Exiting Configuration Utilityccccoceennee 49 FXh
Extended Commands..........cccceeveeeiieniiienenne 29 Standard Keyboard Command..................... 28
Extended Keyboard and Mouse Echo
G
ComMMaNGS.........coereerierieieenee e 12
External Input Detection...........ocoevceeeieeennnen. 8 General Timeout
External Input Invoked Security............c.c...... 10 see Status Register....ooovvvveeiiieeccc e, 27
ii MultiKey/42i Developer's Technical Reference

H

HICOUNT

Memory Map Definition...........cccoeveerienne 23
HLDKEY1

Memory Map Definition...........cccoeveevnenne 23
HLDKEY?2

Memory Map Definition...........cccoeveevnenne 23
HOTKEY1

Memory Map Definition...........cccoeveevnenne 23
HOTKEY?2

Memory Map Definition...........cccoveevneene 23
HOTKEY3

Memory Map Definition...........cccoveevneene 23
HOTKEY4

Memory Map Definition...........cccoveevneene 23
HOTKEY5

Memory Map Definition...........cccooveevneene 23
HOTKEYS

Memory Map Definition...........cccooveevneene 22
HOTTASK

Memory Map Definition...........cccooveeevnenne 22
I
IBF e 18
IBM Defined RAM Locations............ccoeenee. 12
Inactivity Indicationccococoeiiiiiiiniicniens 8
Inactivity Invoked SeCuUritycccoveeevieeniennns 7
INDEX

Memory Map Definition...........cccoeveeernenne 23
Inhibited Switch

see Status Register....oovvvieeiiieieeeee, 27
Input Buffer Full (IBF)

see Status Register....oovvvieeiiieieeeee, 27
TRQL PIN .o 18
IRQL2 PIN ..o 18
K
KBDRSP

Memory Map Definition...........cccoeveerienne 22
KCCB

Memory Map Definition...........cccoeveerienne 22
KCMISC

Memory Map Definition...........cccoeveerienne 21
KCSTATE

Memory Map Definition...........ccceeveerieene 21

See BCh-BDhoceeiiiiiiiece e 29
KEY1TSK

Memory Map Definition...........cccooveeiienne 23
KEY3TSK

Memory Map Definition...........cccooveeiienne 23
KEY4TSK

Memory Map Definition...........cccooveevieene 23

KEY5TSK

Memory Map Definitioncceveeerienne 23
Keyboard Controller Command Byte.............. 30
Keyboard Controller Information................... 37
Keyboard Controller Microprocessor.............. 15
Keyboard Controller State Saving.................. 12
Keyboard/Mouse Port Swappingccccceeeeeee. 2
Keyboard/Mouse POST Routines................... 53
Keyboards and Auxiliary Device Commands. 31
KEYLOCK ...t 20
KSRSND

Memory Map Definitionccceveeerienne 22
KSTATEL

Memory Map Definitionccevceerienne 21

See BCh-BDh......cceiiiiiiiice e 29
KSTATE2

Memory Map Definitionccevceerienne 22

See BCh-BDh......ooeeiiiiiiecie e 29
L
LCKITSK

Memory Map Definitionccevceerienne 23
LCK2TSK

Memory Map Definitionccevceerienne 23
LEDDATA

Memory Map Definitionccevceerienne 22
LENGTH

See BCh-BDh......cceiiiiiiiiiice e 29
LOCOUNT

Memory Map Definitionccceveerienne 22
M
MDCOUNT

Memory Map Definitionccoocevveeneen. 22
MultiKey Control Routines.............cccccvenene. 51
MultiKey Keyboard Controller Routines........ 51
MultiKey Support ROULINES.............ccoeeveenene. 52
MultiKey/42i BIOS ROUtINES..........cccceeeennene 52
MultiKey/42i Configuration Utility................ 33
MultiKey/42i Feature SUPPOIt.........ccceveernene 40
MultiKey/42i Hardware Perspectives.............. 15
MultiKey/42i OVerviewcccocoeeveeeneeennnen. 1
MultiKey/42i Setup Routines...........cccceeveeene 53
MultiKey/42i Software Interface.................... 27
O
OBttt 18
OEM MultiKey/42i Configuration Utility 10
Output Buffer Full (OBF)

see Status Registeroooveveiieiieeee 27
P
PLINPUT

Memory Map Definitioncceveeerieene 23

MultiKey/42i Developer's Technical Reference

P1VALUE SChEMALICS...ccvveviiee e 16
Memory Map Definition...........cccoveeeerieens 22 Secure Controller Configuration..............ccc...... 4
Parity Error Secure Password.........cooeeeieeiiie e 4
see Status Register.....oovveveeiiieiccee e, 27 Secure USB Password Validation 4
Password and Keylock Security..........ccccoeeeneeee. 3 Security Pin Control TasK.........cccoveeeiieeiiiennnn 4
PENDING STACK
Memory Map Definition...........cccoveeerneens 22 Memory Map Definition...........cccoeveernenne 21
Pin Control Task Definition............ccecevvene 20 Standard 2K 8042 Code Size........cccccevvvruennnnn. 2
PINITSK Standard Commands............ccecveveeieeneennenn 28
Memory Map Definition...........cccoveeerneens 23 Standard Memory Map........ccooceveieeniieenienne 21
PIN2TSK Standard/Extended Features.............ccvcvvreennen. 1
Memory Map Definition...........ccccoveerneens 23 Standard/Extended Keyboard Support 2
Product Differentiation.............ccocceevceeiiiennnne 13 Standard/Extended PS/2 Mouse Support........... 2
Program Control OVerviewccccccevceeeenee 35 Starting the Configuration Utility 34
Program On-Line HElp.......ccoooiiieiiieiiieee 36 StatUS REQISLESeeeivieeiie e 27
Programmable HotKeysccocoeviiiiieennen, 5 System Flag (FO)
PS/2 Style Platform Support........cccccceeeeeenee. 11 see Status Register....oovveieeiiieeee e, 27
PW1AREA T
Memory Map Definition...........cccoveeerneens 23
PW1INDX TEMP
Memory Map Definition...........cccoveeerneens 23 Memory Map Definition...........cccoeveeiienne 21
PW2AREA The Main Screen Layoutccceevcveeeiieeeneenn. 35
Memory Map Definition...........cccoveeerneens 23 TIMEOUT
PW2INDX Memory Map Definition...........cccoeveevnenne 21
Memory Map Definition...........cccoveeerieens 23 TMR1TSK
PWINDEX Memory Map Definition...........cccoeveevnenne 23
Memory Map Definition...........cccoveeerieens 23 TMRATE1
PWNULL1 Memory Map Definition...........cccoeveevnenne 22
Memory Map Definition...........cccoveeerieens 23 e BCh-BDh ..o, 29
PWNULL2 TMRATE2
Memory Map Definition...........cccoveeereeens 23 Memory Map Definition...........cccooveerieene 22
PWSCAN1 See BCh-BDhoeeiiiiiiece e 29
Memory Map Definition...........cccoveeereeens 23 TMRATE3
PWSCAN2 Memory Map Definition...........cccooveerieene 22
Memory Map Definition...........cccoveereens 23 e BCh-BDh ..., 29
TMRATE4
Q Memory Map Definition...........cccooveerieene 23
QuickLock Indication............cccoeevviieeeiiiieeeens 5 TMRATE4
R See BCh-BDhoeeiiiiiiece e 29
TMRATES
RAM/ROM Scan Code Conversion Table........ 3 Memory Map Definition...........cccooveerneene 23
RETRY TMRATES
Memory Map Definition...........cccoveereens 22 e BCh-BDh ..., 29
ROULINES OVENVIEW ... 51 TMRFLGS
S Memory Map Definition...........cccooveerneene 22
See BCh-BDhoeeiiiiiiece e 29
Sample Keyboard Controller Code................. 54 Transparent Software GateA20...........ccccecveennee 2
Saving the Configuration to DisK 38 TST1PIN
SCANTBL Memory Map Definition...........cccooveerneene 22
Memory Map Definition...........cccoveereens 23 TST2PIN
Memory Map Definition...........cccooveerneene 22
iv MultiKey/42i Developer's Technical Reference

U

UPI-41 and UPI-42
see Keyboard Controller Microprocessor.....15
User Input Inactivity Timercccevceeeneeenenen. 6

X

XAUXCLK pin...

XAUXDATA pin

MultiKey/42i Developer's Technical Reference

This page left blank.

Vi

MultiKey/42i Developer's Technical Reference

Abbreviated Tables

The following pages contain tables that are linked to text in the preceding chapters. They are part
of the interactive file.

these pages are not standard elements of the MultiKey/42i Developer's Technical Reference.
They do not contain page numbers. The bottom of each page is marked:

Remove this page before photocopying and binding this document.

If you intend to print this file, to keep it as a hard copy resource, make sure you remove this page
and all of the following pages, afterwards.

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 1 of 3)

Symbol RAM Location Description
(Range)
KCMISC 02h Keyboard Controller Miscellaneous Flags

Bit7 - Auxiliary Expecting Response (bit1)
Bit6 - Auxiliary Expecting Response (bit0)
Bit5 - Keyboard Expecting Response (bit1)
Bit4 - Keyboard Expecting Response (bit0)
Bit3 - Auxiliary Expecting Four Responses
Bit2 - No D2h Command Password checking
Bit1 - Password Loaded, Memory is Read-Only
Bit0 - Security is Enabled

Remove this page before photocopying and binding this document

Table 2-2.

Memory Map. (sheet 3 of 3)

Symbol RAM Location Description
(Range)
KEY 1TSK 040h-041h HotKey1 Pin Control Task Value (2 bytes)
KEY 2TSK 042h-043h HotKey2 Pin Control Task Value (2 bytes)
KEY3TSK 044h-045h HotKey3 Pin Control Task Value (2 bytes)
KEY4TSK 046h-047h HotKey4 Pin Control Task Value (2 bytes)
KEY5TSK 048h-049h HotKey5 & Inactivity Timer Pin Control Task Value (2 bytes)

Remove this page before photocopying and binding this document

Table 2-2. Memory Map.(sheets 2 and 3)

Symbol RAM Location Description
(Range)
TMRATEL 027h Timer value 380us, Device Bit Time
TMRATE2 028h Timer value 2.4ms, Byte Receive Time
TMRATE3 029h Timer value 11.7ms, Start Bit Time
TMRATE4 038h Timer value 0.12s, Compensation Time
TMRATES 03%h Timer value 30s-128m, Inactivity Time

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 2 of 3)

Symbol RAM Location Description
(Range)
TMRFLGS 01Eh Timer Miscellaneous State flags

Bit7 - Flashing LED Counter (bit1)
Bit6 - Flashing LED Counter (bit0)
Bit5 - Reserved

Bit4 - Reserved

Bit3 - Flashing LED Task Pending
Bit2 - Keyboard Controller Suspended
Bitl - KEY5TSK isonly for HotKey 5
Bit0 - Flashing LED when Suspended

Remove this page before photocopying and binding this document

Table 5-2. Memory Map. (sheet 2 of 3)

Symbol RAM Location Description
(Range)
TST1PIN 01Ch External Input Event Pin Mask (PIN1TSK)
TST2PIN 01Dh External Input Event Pin Mask (PIN2TSK)
Table 2-2. Memory Map. (sheet 3 of 3)
Symbol RAM Location Description
(Range)
PINITSK 050h-051h External Input Eventl Pin Control Task Value (2 bytes)
PIN2TSK 052h-053h External |nput Event2 Pin Control Task VValue (2 bytes)

Remove this page before photocopying and binding this document

Table 3-2. Standard Command Set.

Command Description
20h-3Fh Read the contents of the designated RAM Iocations (20h-3Fh) and send it to System
60h-7Fh Get abyte of datafrom System and write into one of locations (20h-3Fh)

Remove this page before photocopying and binding this document

Table 3-2. Standard Command Set.

Command Description
D2h Send data back to the System asiif it came from the Keyboard
D3h Send data back to the System asiif it came from the Auxiliary Device (PS/2 Mouse)

Remove this page before photocopying and binding this document

Table 3-3. Extended Command Set.

Command Description
B8h Setup Phoenix Extended Memory Access INDEX
Boh Get current Phoenix Extended Memory Access INDEX
BAh Get current Phoenix Extended Memory referenced by INDEX
Cannot read the Password Storage Area
BBh

If neither Password isloaded, write Phoenix Extended Memory referenced by INDEX.
Cannot write the Password Storage Area. Once the Password isloaded, memory is locked

Remove this page before photocopying and binding this document

Table 3-3. Extended Command Set.

Command Description

AFh Set Inactivity Timer value from 0.5 to 128 minutes (zero disables timer)

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 3 of 3)

Symbol RAM Location Description
(Range)
TMRITSK 04Eh-04Fh Inactivity Timer Pin Control Task Value (2 bytes)

Remove this page before photocopying and binding this document

Table 3-3. Extended Command Set.

Command Description

BCh - BDh Read/Write the following MultiK ey variables referenced by INDEX:
LENGTH (0) Number of MultiKey variables

KCSTATE (1) Keyboard Controller State flags

TMRFLGS (2) Timer Miscellaneous State flags

TMRATE1 (3) Timer value 380ms, Device Bit Time
TMRATE2 (4) Timer value 2.4ms, Byte Receive Time
TMRATE3 (5) Timer value 11.7ms, Start Bit Time
TMRATE4 (6) Timer value 0.12seconds, Compensation Time
TMRATE5 (7) Timer value 30 seconds to 128 minutes, Inactivity Time
KSTATEL (8) Keyboard Scan Code Set & LED state
KSTATE2 (9) Keyboard Typematic Delay & Rate
FUNCTION (A) Interrupt Function Request value

Table 2-2. Memory Map. (sheet 3 of 3)

Symbol RAM Location Description
(Range)
FUNCTION 035h Interrupt Function Request Vaue

Remove this page before photocopying and binding this document

Table 3-3. Extended Command Set.

Command Description

BCh - BDh Read/Write the following MultiK ey variables referenced by INDEX:
LENGTH (0) Number of MultiKey variables

KCSTATE (1) Keyboard Controller State flags

TMRFLGS (2) Timer Miscellaneous State flags

TMRATE1 (3) Timer value 380ms, Device Bit Time
TMRATE2 (4) Timer value 2.4ms, Byte Receive Time
TMRATE3 (5) Timer value 11.7ms, Start Bit Time
TMRATE4 (6) Timer value 0.12seconds, Compensation Time
TMRATE5 (7) Timer value 30 seconds to 128 minutes, Inactivity Time
KSTATEL (8) Keyboard Scan Code Se t & LED state
KSTATE2 (9) Keyboard Typematic Delay & Rate
FUNCTION (A) Interrupt Function Request value

Table 2-2. Memory Map.

Symbol RAM Location Description
(Range)
KSTATEL 018h Keyboard Scan Code Set and LED State
Bit7 - Keyboard Disabled at Device
Bit6 - Reserved

Bit5 - Scan Code Set Bitl
Bit4 - Scan Code Set Bit0
Bit3 - Reserved

Bit2 - CapsLock LED
Bitl - Num Lock LED
BitO - Scroll Lock LED

KSTATE2 01%h Keyboard Typematic Delay and Rate
Bit7 - Transparent Security Mode
Bit6 - Typematic Delay Bitl

Bit5 - Typematic Delay Bit0O

Bit4 - Typematic Rate Bit4

Bit3 - Typematic Rate Bit3

Bit2 - Typematic Rate Bit2

Bitl - Typematic Rate Bitl

Bit0 - Typematic Rate Bit0

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 3 of 3)

Symbol RAM Location Description
(Range)
LCK1TSK 04Ah-04Bh Normal Password Pin Control Task Value (2 bytes)
LCK2TSK 04Ch-04Dh Extended Password Pin Control Task Value (2 bytes)

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 1 of 3)

Symbol RAM Location Description
(Range)
KCSTATE 03h Keyboard Controller State Flags

Bit7 - OBF Datais not pending

Bit6 - Internal Device Command flag

Bit5 - Auxiliary Device Disabled

Bit4 - Keyboard Device Disabled

Bit3 - Use RAM Scan Code Conversion Table
Bit2 - Not Waiting for Keyboard LED Data
Bitl- AT Environment (0=PS/2)

Bit0 - Keyboard/Auxiliary Ports Not Swapped

Remove this page before photocopying and binding this document

Table 2-2. Memory Map. (sheet 2 of 3)

Symbol RAM Location Description
(Range)
KCCB 020h Keyboard Controller Command Byte
Bit7 - Reserved

Bit6 - Convert Scan Codes

Bit5 - Auxiliary Disabled

Bit4 - Keyboard Disabled

Bit3 - Reserved

Bit2 - System Flag

Bitl - Auxiliary Interrupt Enabled
Bit0 - Keyboard Interrupt Enabled

Remove this page before photocopying and binding this document

Table 3-3. Extended Command Set.

Command Description

BCh - BDh Read/Write the following MultiK ey variables referenced by INDEX:
LENGTH (0) Number of MultiKey variables

KCSTATE (1) Keyboard Controller State flags

TMRFLGS (2) Timer Miscellaneous State flags

TMRATE1 (3) Timer value 380ms, Device Bit Time
TMRATE2 (4) Timer value 2.4ms, Byte Receive Time
TMRATE3 (5) Timer value 11.7ms, Start Bit Time
TMRATE4 (6) Timer value 0.12seconds, Compensation Time
TMRATE5 (7) Timer value 30 seconds to 128 minutes, Inactivity Time
KSTATEL (8) Keyboard Scan Code Set & LED state
KSTATE2 (9) Keyboard Typematic Delay & Rate
FUNCTION (A) Interrupt Function Request value

Table 2-2. Memory Map. (sheet 2 of 3)

Symbol RAM Location Description
(Range)
TMRFLGS 01Eh Timer Miscellaneous State flags

Bit7 - Flashing LED Counter (bit1)
Bit6 - Flashing LED Counter (bit0)
Bit5 - Reserved

Bit4 - Reserved

Bit3 - Flashing LED Task Pending
Bit2 - Keyboard Controller Suspended
Bitl - KEY5TSK isonly for HotKey 5
Bit0 - Flashing LED when Suspended

Remove this page before photocopying and binding this document

